@article{IIGUM_2020_31_a4,
author = {B. Sh. Mordukhovich},
title = {Optimal control of differential {inclusions,~II:~sweeping}},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {62--77},
year = {2020},
volume = {31},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a4/}
}
B. Sh. Mordukhovich. Optimal control of differential inclusions, II: sweeping. The Bulletin of Irkutsk State University. Series Mathematics, Tome 31 (2020), pp. 62-77. http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a4/
[1] Arround C. E., Colombo G., “A maximum principle for the controlled sweeping process”, Set-Valued Var. Anal., 26 (2018), 607–629 | DOI | MR
[2] Brokate M., Krejčí P., “Optimal control of ODE systems involving a rate independent variational inequality”, Disc. Contin. Dyn. Syst. Ser. B, 18 (2013), 331–348 | DOI | MR | Zbl
[3] Cao T. H., Mordukhovich B. S., “Optimal control of a perturbed sweeping process via discrete approximations”, Disc. Contin. Dyn. Syst. Ser. B, 21 (2016), 3331–3358 | DOI | MR | Zbl
[4] Cao T. H., Mordukhovich B. S., “Optimality conditions for a controlled sweeping process with applications to the crowd motion model”, Disc. Contin. Dyn. Syst. Ser. B, 22 (2017), 267–306 | DOI | MR | Zbl
[5] Cao T. H., Mordukhovich B. S., “Optimal control of a nonconvex perturbed sweeping process”, J. Diff. Eqs., 266 (2019), 1003–1050 | DOI | MR | Zbl
[6] Cao T. H., Mordukhovich B. S., “Applications of optimal control of a nonconvex sweeping process to optimization of the planar crowd motion model”, Disc. Contin. Dyn. Syst., Ser. B, 24 (2019), 4191–4216 | MR | Zbl
[7] Colombo G., Henrion R., Hoang N. D., Mordukhovich B. S., “Optimal control of the sweeping process”, Dyn. Contin. Discrete Impuls. Syst. Ser. B, 19 (2012), 117–159 | MR | Zbl
[8] Colombo G., Henrion R., Hoang N. D., Mordukhovich B. S., “Optimal control of the sweeping process over polyhedral controlled sets”, J. Diff. Eqs., 260 (2016), 3397–3447 | DOI | MR | Zbl
[9] Colombo G., Mordukhovich B. S., Nguyen D., “Optimization of a perturbed sweeping process by discontinuous controls”, SIAM J. Control Optim. (to appear) , arXiv: 1808.04041
[10] Colombo G., Mordukhovich B. S., Nguyen D., “Optimal control of sweeping processes in robotics and traffic flow models”, J. Optim. Theory Appl., 182 (2019), 439–472 | DOI | MR | Zbl
[11] Colombo G., Thibault L., “Prox-regular sets and applications”, Handbook of Nonconvex Analysis, eds. D.Y. Gao, D. Motreanu, International Press, Boston, 2010, 99–182 | MR | Zbl
[12] De Pinho M.d.R., Ferreira M. M.A., Smirnov G. V., “Optimal control involving sweeping processes”, Set-Valued Var. Anal., 27 (2019), 523–548 | DOI | MR | Zbl
[13] Edmond J. F., Thibault L., “Relaxation of an optimal control problem involving a perturbed sweeping process”, Math. Program., 104 (2005), 347–373 | DOI | MR | Zbl
[14] Hedjar R., Bounkhel M., “Real-time obstacle avoidance for a swarm of autonomous mobile robots”, Int. J. Adv. Robot. Syst., 11 (2014), 1–12 | DOI
[15] Hoang N. D., Mordukhovich B. S., “Extended Euler-Lagrange and Hamiltonian formalisms in optimal control of sweeping processes with controlled sweeping sets”, J. Optim. Theory Appl., 180 (2019), 256–289 | DOI | MR | Zbl
[16] Krasnosel'skii A. M., Pokrovskii A. V., Systems with Hysteresis, Springer, Berlin, 1989 | DOI | MR | Zbl
[17] Lovas G. G., “Modeling and simulation of pedestrian traffic flow”, Transpn. Res.-B, 28B (1994), 429–443 | DOI
[18] Mordukhovich B. S., “Sensitivity analysis in nonsmooth optimization”, Theoretical Aspects of Industrial Design (Philadelphia, Pennsylvania), SIAM Proc. Appl. Math., 58, eds. D.A. Field, V. Komkov, 32–46 | MR
[19] Mordukhovich B. S., Variational Analysis and Generalized Differentiation, v. I, Basic Theory, Springer, Berlin, 2006 | DOI | MR
[20] Mordukhovich B. S., Variational Analysis and Generalized Differentiation, v. II, Applications, Springer, Berlin, 2006 | DOI | MR
[21] Mordukhovich B. S., Variational Analysis and Applications, Springer, New York, 2018 | DOI | MR | Zbl
[22] Mordukhovich B. S., “Optimal control of differential inclusions, I: Lipshitzian case”, The Bulletin of Irkutsk State University. Series Mathematics, 30 (2019), 45–58 | DOI | Zbl
[23] Mordukhovich B. S., Outrata J. V., “Coderivative analysis of quasi-variational inequalities with mapplications to stability and optimization”, SIAM J. Optim., 18 (2007), 389–412 | DOI | MR | Zbl
[24] Mordukhovich B. S., Rockafellar R. T., “Second-order subdifferential calculus with applications to tilt stability in optimization”, SIAM J. Optim., 22 (2012), 953–986 | DOI | MR | Zbl
[25] Moreau J. J., “On unilateral constraints, friction and plasticity”, New Variational Techniques in Mathematical Physics, Proceedings from CIME (Cremonese, Rome, 1974), eds. G. Capriz, G. Stampacchia, 173–322 | MR
[26] Tolstonogov A. A., “Control sweeping process”, J. Convex Anal., 23 (2016), 1099–1123 | MR | Zbl
[27] Venel J., “A numerical scheme for a class of sweeping process”, Numerische Mathematik, 118 (2011), 451–484 | DOI | MR