On necessary optimality conditions for discrete control systems
The Bulletin of Irkutsk State University. Series Mathematics, Tome 31 (2020), pp. 49-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, under weakened assumptions, we study high-order necessary optimality conditions for discrete optimal control problems with the free right end of the trajectory. Here, we first use the concept of the relative interior of a set in the broad sense, and then the combination of linear (i.e. uniformly small) and needle variation of the admissible control. As a result, a new formula for the increment of the quality functional with the members of zeroth, first and second order of smallness is obtained. This formula serves as a source of the well-known zeroth order necessary optimality condition, if the admissible control has no linear variation, or the well-known first and second order necessary optimality conditions, if the increment of the quality functional of order zero is vanished on a certain subset of the domain of admissible controls. Following the obtained formula of the increment of the quality functional, the concepts of zeroth, first and second variations of the quality functional are introduced in a more general form, from which, in particular, the well-known variations of the quality functional follow. Based on the obtained formulae for the variations of the quality functional, using the needle variation of the admissible control, more constructive the zeroth, first and second order necessary optimality conditions with broad applications area are obtained.
Keywords: discrete control systems, optimal control, necessary conditions, variations of cost function.
@article{IIGUM_2020_31_a3,
     author = {M. J. Mardanov and T. K. Melikov},
     title = {On necessary optimality conditions for discrete control systems},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {49--61},
     year = {2020},
     volume = {31},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a3/}
}
TY  - JOUR
AU  - M. J. Mardanov
AU  - T. K. Melikov
TI  - On necessary optimality conditions for discrete control systems
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2020
SP  - 49
EP  - 61
VL  - 31
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a3/
LA  - ru
ID  - IIGUM_2020_31_a3
ER  - 
%0 Journal Article
%A M. J. Mardanov
%A T. K. Melikov
%T On necessary optimality conditions for discrete control systems
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2020
%P 49-61
%V 31
%U http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a3/
%G ru
%F IIGUM_2020_31_a3
M. J. Mardanov; T. K. Melikov. On necessary optimality conditions for discrete control systems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 31 (2020), pp. 49-61. http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a3/

[1] Ashchepkov L. T., Optimal Control of Discontinuous Systems, Nauka Publ., Novosibirsk, 1987, 226 pp. (in Russian)

[2] Boltyanskii V. G., Optimal Control of Discrete Systems, Nauka Publ., M., 1978, 446 pp. (in Russian)

[3] Butkovskii A. G., “On necessary and sufficient optimality conditions for impulse control systems”, Autom. Remote Control, 24:8 (1963), 1056–1064 (in Russian)

[4] Gabasov R. F., “The optimality of singular controls”, Differential Equations, 4 (1968), 1000–1011 (in Russian) | MR | Zbl

[5] Gabasov R. F., Kirillova F. M., “On the theory of necessary conditions for optimality for discrete systems”, Autom. Remote Control, 12:30 (1969), 1921–1928 | MR | Zbl

[6] Gabasov R. F., Kirillova F. M., Qualitative Theory of Optimal Processes, Nauka Publ, M., 1971, 508 pp. (in Russian)

[7] Krasovsky N. N., “On a problem of optimal regulation”, Applied mathematics and mechanics, 21:5 (1957), 670–677 (in Russian)

[8] Mardanov M. J., Melikov T. K., “A New Discrete Analogue of Pontryagin's Maximum Principle”, Doklady Mathematics, 98:3 (2018), 549–551 | DOI | DOI | Zbl

[9] Mardanov M. J., Melikov T.K. Malik S. T., “On the Theory of Optimal Processes in Discrete Systems”, Math. Notes, 106:3 (2019), 390–401 | DOI | DOI | MR | Zbl

[10] Mordukhovich B. S., Approximation methods in optimization and control problems, Nauka Publ., M., 1988, 360 pp. (in Russian) | MR

[11] Propoi A. I., Elements of the Theory of Optimal Discrete Processes, Nauka Publ, M., 1973, 256 pp. (in Russian)

[12] Rozonoér L.I., “Pontryagin's maximum principle in the theory of optimal systems”, Autom. Remote Control, 20:12 (1959), 1561–1578 (in Russian) | MR

[13] Fan Liang-Tseng, Wang Chu-Sen, The discrete maximum principle, Mir Publ., M., 1967, 180 pp.

[14] Jordan B. K., Polak E., “Theory of class of discrete optimal control system”, J. Electr. and Control, 17:6 (1964), 697–711 | DOI | MR

[15] M. J. Mardanov, T. K. Melikov, S. T. Malik, K. Malikov, “First- and second-order necessary conditions with respect to components for discrete optimal control problems”, J. Comput. Appl. Math., 364 (2020), 112342 | DOI | MR | Zbl

[16] Mardanov M. J., Melikov T. K., “A method for studying the optimality of controls in discrete systems”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 40:2 (2014), 5–13 | MR | Zbl

[17] Mardanov M. J., Melikov T. K., “On strengthening of optimality conditions in discrete control systems”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44:1 (2018), 135–154 | MR | Zbl

[18] Toan N. T.,Thuy L. Q., “Second-order necessary optimality conditions for a discrete optimal control problem with mixed constrain”, Journal of Global Optimization, 64:3 (2016), 533–562 | DOI | MR | Zbl