Mots-clés : RAPM
@article{IIGUM_2020_31_a0,
author = {M. M. Dyshaev and V. E. Fedorov},
title = {The optimal rehedging interval for the options portfolio within the {RAMP,} taking into account transaction costs and liquidity costs},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--17},
year = {2020},
volume = {31},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a0/}
}
TY - JOUR AU - M. M. Dyshaev AU - V. E. Fedorov TI - The optimal rehedging interval for the options portfolio within the RAMP, taking into account transaction costs and liquidity costs JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2020 SP - 3 EP - 17 VL - 31 UR - http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a0/ LA - en ID - IIGUM_2020_31_a0 ER -
%0 Journal Article %A M. M. Dyshaev %A V. E. Fedorov %T The optimal rehedging interval for the options portfolio within the RAMP, taking into account transaction costs and liquidity costs %J The Bulletin of Irkutsk State University. Series Mathematics %D 2020 %P 3-17 %V 31 %U http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a0/ %G en %F IIGUM_2020_31_a0
M. M. Dyshaev; V. E. Fedorov. The optimal rehedging interval for the options portfolio within the RAMP, taking into account transaction costs and liquidity costs. The Bulletin of Irkutsk State University. Series Mathematics, Tome 31 (2020), pp. 3-17. http://geodesic.mathdoc.fr/item/IIGUM_2020_31_a0/
[1] Almgren R., Chriss N., “Optimal execution of portfolio transactions”, Journal of Risk, 3:2 (2001), 5–39 | DOI
[2] Almgren R., Li T.M., “Option hedging with smooth market impact”, Mark. Microstructure Liq., 02:01 (2016), 1650002 | DOI
[3] Ankudinova J., Ehrhardt M., “On the numerical solution of nonlinear Black–Scholes equations”, Computers Mathematics with Applications, 56:3 (2008), 799–812 | DOI | MR | Zbl
[4] Arenas A. J., González-Parra G., Caraballo B. M., “A nonstandard finite difference scheme for a nonlinear Black–Scholes equation”, Mathematical and Computer Modelling, 57:7 (2013), 1663–1670 | DOI | MR | Zbl
[5] Bank P., Soner H. M., Voß M., “Hedging with temporary price impact”, Mathematics and Financial Economics, 11:2 (2017), 215–239 | DOI | MR | Zbl
[6] Barles G., Soner H. M., “Option pricing with transaction costs and a nonlinear Black–Scholes equation”, Finance and Stochastics, 2:4 (1998), 369–397 | DOI | MR | Zbl
[7] Bertsimas D., Lo A.W., “Optimal control of execution costs”, Journal of Financial Markets, 1:1 (1998), 1–50 | DOI | MR
[8] Black F., Scholes M., “The pricing of options and corporate liabilities”, Journal of Political Economy, 81:3 (1973), 637–654 | DOI | MR | Zbl
[9] Bordag L. A., “Study of the risk-adjusted pricing methodology model with methods of geometrical analysis”, Stochastics, 83:4–6 (2011), 333–345 | DOI | MR | Zbl
[10] Boyle P. P., Vorst T., “Option replication in discrete time with transaction costs”, The Journal of Finance, 47:1 (1992), 271–293 | DOI
[11] Clewlow L., Hodges S., “Optimal delta-hedging under transactions costs”, Journal of Economic Dynamics and Control, 21:8 (1997), 1353–1376 | DOI | MR | Zbl
[12] Cruz J. M.T.S., Ševčovič D., “Option pricing in illiquid markets with jumps”, Applied Mathematical Finance, 25:4 (2018), 389–409 | DOI | MR | Zbl
[13] Cvitanić J., Karatzas I., “Hedging and portfolio optimization under transaction costs: a martingale approach”, Mathematical Finance, 6:2 (1996), 133–165 | DOI | MR | Zbl
[14] Davis M. H.A., Norman A. R., “Portfolio selection with transaction costs”, Mathematics of Operations Research, 15:4 (1990), 676–713 | DOI | MR | Zbl
[15] Düring B., Fournié M., Jüngel A., “Convergence of a high-order compact finite difference scheme for a nonlinear Black–Scholes equation”, M2AN, Math. Model. Numer. Anal., 38:2 (2004), 359–369 | DOI | MR | Zbl
[16] Dyshaev M. M., Fedorov V. E., “Comparing of some sensitivities (Greeks) for nonlinear models of option pricing with market illiquidity”, Mathematical notes of NEFU, 26:2 (2019), 94–108 | DOI | Zbl
[17] Gatheral J., Schied A., Handbook on systemic risk, eds. J. A. Langsam, Jean-Pierre Fouque, Cambridge, 2013, 579–599 | DOI | MR
[18] Heider P., “Numerical methods for non-linear Black–Scholes equations”, Applied Mathematical Finance, 17 (2010), 59–81 | DOI | MR | Zbl
[19] Jandačka M., Ševčovič D., “On the risk-adjusted pricing-methodology-based valuation of vanilla options and explanation of the volatility smile”, Journal of Applied Mathematics, 2005:3 (2005), 235–258 | DOI | Zbl
[20] Kabanov Y., Safarian M., Markets with transaction costs. Mathematical theory, Springer Finance, Springer, Berlin–Heidelberg, 2010 | DOI | MR
[21] Kabanov Y. M., Safarian M. M., “On Leland's strategy of option pricing with transactions costs”, Finance and Stochastics, 1:3 (1997), 239–250 | DOI | MR | Zbl
[22] Leland H. E., “Option pricing and replication with transactions costs”, The Journal of Finance, 40:5 (1985), 1283–1301 | DOI
[23] Obizhaeva A. A., Wang J., “Optimal trading strategy and supply/demand dynamics”, Journal of Financial Markets, 16:1 (2013), 1–32 | DOI
[24] Rogers L. C. G., Singh S., “The cost of illiquidity and its effects on hedging”, Mathematical Finance, 20:4 (2010), 597–615 | DOI | MR | Zbl
[25] Soner H. M., Shreve S. E., Cvitanic J., “There is no nontrivial hedging portfolio for option pricing with transaction costs”, Ann. Appl. Probab., 5:2 (1995), 327–355 | DOI | MR | Zbl
[26] Toft K. B., “On the mean-variance tradeoff in option replication with transactions costs”, The Journal of Financial and Quantitative Analysis, 31:2 (1996), 233–263 | DOI
[27] Whalley A. E., Wilmott P., “An asymptotic analysis of an optimal hedging model for option pricing with transaction costs”, Mathematical Finance, 7:3 (1997), 307–324 | DOI | MR | Zbl