Non-finitary generalizations of nil-triangular subalgebras of Chevalley algebras
The Bulletin of Irkutsk State University. Series Mathematics, Tome 29 (2019), pp. 39-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N\Phi(K)$ be a niltriangular subalgebra of Chevalley algebra over a field or ring $K$ associated with root system $\Phi$ of classical type. For type $A_{n-1}$ it is associated to algebra $NT(n,K)$ of (lower) nil-triangular $n \times n$- matrices over $K$. The algebra $R=NT(\Gamma,K)$ of all nil-triangular $\Gamma$-matrices $\alpha =||a_{ij}||_{i,j\in \Gamma}$ over $K$ with indices from chain $\Gamma$ of natural numbers gives its non-finitary generalization. It is proved, (together with radicalness of ring $R$) that if $K$ is a ring without zero divizors, then ideals $T_{i,i-1}$ of all $\Gamma$-matrices with zeros above $i$-th row and in columns with numbers $\geq i$ exhausts all maximal commutative ideals of the ring $R$ and associated Lie rings $R^{(-)}$, and also maximal normal subgroups of adjoint group (it is isomorphic to the generalize unitriangular group $UT(\Gamma,K)$). As corollary we obtain that the automorphism groups $Aut\ R$ and $Aut\ R^{(-)}$ coincide. Partially automorphisms studied earlier, in particulary, for $Aut\ UT(\Gamma,K)$ when $K$ is a field. Well-known (1990) special matrix representation of Lie algebras $N\Phi(K)$ allows to construct non-finitary generalizations $NG(K)$ of type $G=B_\Gamma,C_\Gamma$ and $D_\Gamma$. Be research automorphisms by transfer to factors of Lie ring $NG(K)$ which is isomorphic to $NT(\Gamma,K)$. On the other hand, for any chain $\Gamma$ finitary nil-triangular $\Gamma$-matrices forms finitary Lie algebra $FNG(\Gamma,K)$ of type $G=A_{\Gamma}$ ( i.e., $FNG(\Gamma,K)$), $B_{\Gamma},C_{\Gamma }$ and $D_{\Gamma}$. Earlier automorphisms was studied (V. M. Levchuk and G. S. Sulejmanova, 1987 and 2009) for Lie ring $FNT(\Gamma,K)$ over ring $K$ without zero divizors and, also, for finitary generalizations of unipotent subgroups of Chevalley group of classical type over the field (including twisted types).
Keywords: Chevalley algebra, unitriangular group, finitary and nonfinitary generalizations, radical ring.
Mots-clés : nil-triangular subalgebra
@article{IIGUM_2019_29_a4,
     author = {J. V. Bekker and V. M. Levchuk and E. A. Sotnikova},
     title = {Non-finitary generalizations of nil-triangular subalgebras of {Chevalley} algebras},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {39--51},
     publisher = {mathdoc},
     volume = {29},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a4/}
}
TY  - JOUR
AU  - J. V. Bekker
AU  - V. M. Levchuk
AU  - E. A. Sotnikova
TI  - Non-finitary generalizations of nil-triangular subalgebras of Chevalley algebras
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2019
SP  - 39
EP  - 51
VL  - 29
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a4/
LA  - ru
ID  - IIGUM_2019_29_a4
ER  - 
%0 Journal Article
%A J. V. Bekker
%A V. M. Levchuk
%A E. A. Sotnikova
%T Non-finitary generalizations of nil-triangular subalgebras of Chevalley algebras
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2019
%P 39-51
%V 29
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a4/
%G ru
%F IIGUM_2019_29_a4
J. V. Bekker; V. M. Levchuk; E. A. Sotnikova. Non-finitary generalizations of nil-triangular subalgebras of Chevalley algebras. The Bulletin of Irkutsk State University. Series Mathematics, Tome 29 (2019), pp. 39-51. http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a4/