Non-finitary generalizations of nil-triangular subalgebras of Chevalley algebras
The Bulletin of Irkutsk State University. Series Mathematics, Tome 29 (2019), pp. 39-51
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $N\Phi(K)$ be a niltriangular subalgebra of Chevalley algebra
over a field or ring $K$ associated with root system $\Phi$ of
classical type. For type $A_{n-1}$ it is associated to algebra
$NT(n,K)$ of (lower) nil-triangular $n \times n$- matrices over
$K$. The algebra $R=NT(\Gamma,K)$ of all nil-triangular
$\Gamma$-matrices $\alpha =||a_{ij}||_{i,j\in \Gamma}$ over $K$
with indices from chain $\Gamma$ of natural numbers gives its
non-finitary generalization. It is proved, (together with
radicalness of ring $R$) that if $K$ is a ring without zero
divizors, then ideals $T_{i,i-1}$ of all $\Gamma$-matrices with
zeros above $i$-th row and in columns with numbers $\geq i$
exhausts all maximal commutative ideals of the ring $R$ and associated
Lie rings $R^{(-)}$, and also maximal normal subgroups
of adjoint group (it is isomorphic to the generalize unitriangular
group $UT(\Gamma,K)$). As corollary we obtain that the
automorphism groups $Aut\ R$ and $Aut\ R^{(-)}$ coincide.
Partially automorphisms studied earlier, in particulary, for $Aut\ UT(\Gamma,K)$ when $K$ is a field.
Well-known (1990) special matrix representation of Lie algebras
$N\Phi(K)$ allows to construct non-finitary generalizations
$NG(K)$ of type $G=B_\Gamma,C_\Gamma$ and $D_\Gamma$. Be research
automorphisms by transfer to factors of Lie ring $NG(K)$ which is
isomorphic to $NT(\Gamma,K)$.
On the other hand, for any chain $\Gamma$ finitary nil-triangular
$\Gamma$-matrices forms finitary Lie algebra $FNG(\Gamma,K)$ of
type $G=A_{\Gamma}$ ( i.e., $FNG(\Gamma,K)$),
$B_{\Gamma},C_{\Gamma }$ and $D_{\Gamma}$. Earlier automorphisms
was studied (V. M. Levchuk and G. S. Sulejmanova, 1987 and 2009)
for Lie ring $FNT(\Gamma,K)$ over ring $K$ without zero divizors
and, also, for finitary generalizations of unipotent subgroups of
Chevalley group of classical type over the field (including
twisted types).
Keywords:
Chevalley algebra, unitriangular group, finitary and nonfinitary generalizations, radical ring.
Mots-clés : nil-triangular subalgebra
Mots-clés : nil-triangular subalgebra
@article{IIGUM_2019_29_a4,
author = {J. V. Bekker and V. M. Levchuk and E. A. Sotnikova},
title = {Non-finitary generalizations of nil-triangular subalgebras of {Chevalley} algebras},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {39--51},
publisher = {mathdoc},
volume = {29},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a4/}
}
TY - JOUR AU - J. V. Bekker AU - V. M. Levchuk AU - E. A. Sotnikova TI - Non-finitary generalizations of nil-triangular subalgebras of Chevalley algebras JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2019 SP - 39 EP - 51 VL - 29 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a4/ LA - ru ID - IIGUM_2019_29_a4 ER -
%0 Journal Article %A J. V. Bekker %A V. M. Levchuk %A E. A. Sotnikova %T Non-finitary generalizations of nil-triangular subalgebras of Chevalley algebras %J The Bulletin of Irkutsk State University. Series Mathematics %D 2019 %P 39-51 %V 29 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a4/ %G ru %F IIGUM_2019_29_a4
J. V. Bekker; V. M. Levchuk; E. A. Sotnikova. Non-finitary generalizations of nil-triangular subalgebras of Chevalley algebras. The Bulletin of Irkutsk State University. Series Mathematics, Tome 29 (2019), pp. 39-51. http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a4/