@article{IIGUM_2019_29_a2,
author = {G. P. Egorychev},
title = {A short calculation of the multiple sum of {Krivokolesko{\textendash}Leinartas} with linear constraints on summation indices},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {22--30},
year = {2019},
volume = {29},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a2/}
}
TY - JOUR AU - G. P. Egorychev TI - A short calculation of the multiple sum of Krivokolesko–Leinartas with linear constraints on summation indices JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2019 SP - 22 EP - 30 VL - 29 UR - http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a2/ LA - en ID - IIGUM_2019_29_a2 ER -
%0 Journal Article %A G. P. Egorychev %T A short calculation of the multiple sum of Krivokolesko–Leinartas with linear constraints on summation indices %J The Bulletin of Irkutsk State University. Series Mathematics %D 2019 %P 22-30 %V 29 %U http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a2/ %G en %F IIGUM_2019_29_a2
G. P. Egorychev. A short calculation of the multiple sum of Krivokolesko–Leinartas with linear constraints on summation indices. The Bulletin of Irkutsk State University. Series Mathematics, Tome 29 (2019), pp. 22-30. http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a2/
[1] Davletshin M. N., Egorychev G. P., Krivokolesko V. P., New applications of the Egorychev method of coefficients of integral representations and calculation of combinatorial sums, 2015, 64 pp., arXiv: 1506.03596 [math.CO]
[2] Deubechies I., Ten lectures on Wavelets, SIAM, Philadelphia, 1992, xix+357 pp. | DOI | MR
[3] Egorychev G. P., Integralnoe predstavlenie i vychislenie kombinatornykh summ, Nauka, Novosibirsk, 1977, 286 pp.; English: Egorychev G. P., Integral representation and the computation of combinatorial sums, Transl. of Math. Monographs, 59, AMS, 1984 ; 2-nd ed., 1989 | MR | Zbl
[4] Egorychev G. P., “Combinatorial identity from the theory of integral representations in $\mathbb{C}^{n}$”, The Bulletin of Irkutsk State University. Series Mathematics, 4:4 (2011), 39–44 (in Russian) | Zbl
[5] Egorychev G. P., “The enumeration of own $t$-dimentional subspases of a spase $V_m$ over the field $GF(q)$”, The Bulletin of Irkutsk State University. Series Mathematics, 17:3 (2016), 12–22 (in Russian) | Zbl
[6] Egorychev G. P., “Method of Coefficients: an algebraic characterization and recent applications” (2008), Advances in Combinatorial Math., Springer-Verlag, 2009, 1–30 | MR | Zbl
[7] Krattenthaler Ch., “A new $q$-Lagrange formula and some applications”, Proc. Amer. Math. Soc., 90 (1984), 338–344 | DOI | MR | Zbl
[8] Krivokolesko V. P., Leinartas E. K., “On identities with polynomial coefficients”, The Bulletin of Irkutsk State University. Series Mathematics, 5:3 (2012), 56–62 (in Russian) | Zbl
[9] Leont'ev V. K., Selected problems of combinanatorial analysis, Mosk. State Tech. Univ., M., 2001, 182 pp. (in Russian)
[10] Shelkovich V. M., Yuzhakov A. P., “The structure of one class asymptotic V. K. Ivanov's distributions”, Izv. Vuzov, Ser. Math., 1991, no. 4, 70–73 (in Russian) | MR | Zbl
[11] Zeilberger D., On an identity of Deubechies, Amer. Math. Monthly, 100, 1993, 487 pp. | DOI | MR
[12] Zeilberger D., Proof of the alternating sign matrix conjecture, 1994, 84 pp., arXiv: math/9407211 [math.CO] | MR