Ultraparabolic equations with operator coefficients at the time derivatives
The Bulletin of Irkutsk State University. Series Mathematics, Tome 29 (2019), pp. 120-137
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the study of the solvability of boundary value problems for third-order Sobolev-type differential equations of the third order with two time variables (such equations are also called composite-type equations or equations not solved for the derivative). The peculiarities of the equations under study are, firstly, that the differential operators acting at the time derivatives are not assumed inverse, and, secondly, that the statements of boundary value problems for them are determined by the coefficients of these differential operators. For the problems proposed in the article, we prove existence and uniqueness theorems for regular solutions (solutions having all weak derivatives in the sense of Sobolev involved in the equation). The technique of proving the existence theorems is based on a special regularization of the equations under study, a priori estimates, and passage to the limit.
Keywords: irreversible operator coefficients, boundary problems, regular solutions, uniqueness.
Mots-clés : ultraparabolic equations, existence
@article{IIGUM_2019_29_a10,
     author = {A. I. Kozhanov},
     title = {Ultraparabolic equations with~operator coefficients at~the~time derivatives},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {120--137},
     year = {2019},
     volume = {29},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a10/}
}
TY  - JOUR
AU  - A. I. Kozhanov
TI  - Ultraparabolic equations with operator coefficients at the time derivatives
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2019
SP  - 120
EP  - 137
VL  - 29
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a10/
LA  - en
ID  - IIGUM_2019_29_a10
ER  - 
%0 Journal Article
%A A. I. Kozhanov
%T Ultraparabolic equations with operator coefficients at the time derivatives
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2019
%P 120-137
%V 29
%U http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a10/
%G en
%F IIGUM_2019_29_a10
A. I. Kozhanov. Ultraparabolic equations with operator coefficients at the time derivatives. The Bulletin of Irkutsk State University. Series Mathematics, Tome 29 (2019), pp. 120-137. http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a10/

[1] Demidenko G. V., Uspenskii S. V., Partial Differential Equations and Systems not Solvable with Respect to Highest Order Derivatives, Marsel Dekker Inc., New-York, 2003 | DOI | MR

[2] Favini A., Yagi A., Degenerate Differential Equations in Banach Spaces, Marsel Dekker Inc., New-York, 1999 | DOI | MR | Zbl

[3] Hayashi N, Kaikina E. I., Naumkin P. I., Shismarev I. A., Asymptotics for Dissipative Nonlinear Equation, Springer-Verlaq Publ., Berlin, 2006 | MR

[4] Kopachevskiy N. D., Integrodifferetsyal'nye Uravneniya Vol'terra v Gil'bertovom Prostranstve, Tauride National University Publ., Simferopol', 2012 (in Russian)

[5] Korpusov M. O., Razrushenie v Neklassicheskih Nelocal'nyh Uravneniyah, Librokom Publ., M., 2011 (in Russian)

[6] Kozhanov A. I., Composite Type Equations and Inverse Problems, VSP, Utrecht, 1999 | MR | Zbl

[7] Kozlov V., Maz'ya V., Differential Equation with Operator Coefficients with Applications to Boundary Value Problems for Partial Differential Equations, Springer-Verlaq Publ., Berlin, 1999 | MR

[8] Ladyzhenskaia O. A., “Ob Integral'nyh Otsenkah Shodimosti Priblizhennyh Metodov i Resheniiah v Funktsyanalah dlya Lineynyh Ellipticheskih Operatorov”, Vestnik LGU. Ser. Matem., Mekh., Astr., iss. 2, 1958, no. 7, 60–69 (in Russian) | Zbl

[9] Ladyzhenskaia O. A., Ural'tseva N. N., Linear and Quasilinear Elliptic Equations, Academic Press Publ., 1968 | MR | MR

[10] Pyatkov S. G., Operator Theory Nonclassical Problems, VSP, Utrecht, 2003 | DOI | MR

[11] Sveshnikov A. G., Al'shin A. B., Korpusov M. O., Pletner Yu. D., Lineynye i Nelineynye Uravneniya Sobolevskogo Typa, Fizmatlit Publ., M., 2007 (in Russian)

[12] Sobolev S. L., Some Applications of Functional Analysis in Mathematical Physics, American Mathematical Soc., 1991 | MR | MR | Zbl

[13] Sviridyuk G. A., Fedorov V. E., Linear Sobolev Type Equations and Degenerate Semigroups of Operators, VSP, Utrecht, 2003 | MR | Zbl

[14] Trenogin V. A., Funktsyanalnyi Analiz, Nauka Publ., M., 1980 (in Russian)

[15] Umarov Kh. G., Polugruppy Operatorov i Tochnye Resheniya Zadach Anizotropnoy Fil'tratsyi, Fizmatlit Publ., M., 2009 (in Russian) | MR