@article{IIGUM_2019_29_a0,
author = {P. V. Danchev},
title = {A note on commutative nil-clean corners in unital rings},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--9},
year = {2019},
volume = {29},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a0/}
}
P. V. Danchev. A note on commutative nil-clean corners in unital rings. The Bulletin of Irkutsk State University. Series Mathematics, Tome 29 (2019), pp. 3-9. http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a0/
[1] Breaz S., Cǎlugǎreanu G., Danchev P., Micu T., “Nil-clean matrix rings”, Lin. Algebra $\$ Appl., 439:10 (2013), 3115–3119 | DOI | MR | Zbl
[2] Danchev P. V., “Strongly nil-clean corner rings”, Bull. Iran. Math. Soc., 43:5 (2017), 1333–1339 | MR | Zbl
[3] Danchev P. V., “Semi-boolean corner rings”, Internat. Math. Forum, 12:16 (2017), 795–802 | DOI
[4] Danchev P. V., “On corner subrings of unital rings”, Internat. J. Contemp. Math. Sci., 13:2 (2018), 59–62 | DOI | MR
[5] Danchev P. V., “Corners of invo-clean unital rings”, Pure Math. Sci., 7:1 (2018), 27–31 | DOI | MR
[6] Danchev P. V., “Feebly nil-clean unital rings”, Proc. Jangjeon Math. Soc., 21:1 (2018), 155–165 | MR | Zbl
[7] Danchev P. V., Lam T. Y., “Rings with unipotent units”, Publ. Math. Debrecen, 88:3–4 (2016), 449–466 | DOI | MR | Zbl
[8] Danchev P. V., McGovern W. Wm., “Commutative weakly nil clean unital rings”, J. Algebra, 425:5 (2015), 410–422 | DOI | MR | Zbl
[9] Diesl A. J., “Nil clean rings”, J. Algebra, 383:11 (2013), 197–211 | DOI | MR | Zbl
[10] Koşan M. T., Lee T. K., Zhou Y., When is every matrix over a division ring a sum of an idempotent and a nilpotent?, Lin. Algebra Appl., 450:11 (2014), 7–12 | DOI | MR | Zbl
[11] Lam T. Y., A First Course in Noncommutative Rings, Graduate Texts in Math., 131, Second Edition, Springer-Verlag, Berlin–Heidelberg–New York, 2001 | MR | Zbl