A note on commutative nil-clean corners in unital rings
The Bulletin of Irkutsk State University. Series Mathematics, Tome 29 (2019), pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We shall prove that if $R$ is a ring with a family of orthogonal idempotents $\{e_i\}_{i=1}^n$ having sum $1$ such that each corner subring $e_iRe_i$ is commutative nil-clean, then $R$ is too nil-clean, by showing that this assertion is actually equivalent to the statement established by Breaz-Cǎlugǎreanu-Danchev-Micu in Lin. Algebra & Appl. (2013) that if $R$ is a commutative nil-clean ring, then the full matrix ring $\mathbb{M}_n(R)$ is also nil-clean for any size $n$. Likewise, the present proof somewhat supplies our recent result in Bull. Iran. Math. Soc. (2018) concerning strongly nil-clean corner rings as well as it gives a new strategy for further developments of the investigated theme.
Keywords: nil-clean rings, nilpotents, idempotents, corners.
@article{IIGUM_2019_29_a0,
     author = {P. V. Danchev},
     title = {A note on commutative nil-clean corners in unital rings},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {3--9},
     year = {2019},
     volume = {29},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a0/}
}
TY  - JOUR
AU  - P. V. Danchev
TI  - A note on commutative nil-clean corners in unital rings
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2019
SP  - 3
EP  - 9
VL  - 29
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a0/
LA  - en
ID  - IIGUM_2019_29_a0
ER  - 
%0 Journal Article
%A P. V. Danchev
%T A note on commutative nil-clean corners in unital rings
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2019
%P 3-9
%V 29
%U http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a0/
%G en
%F IIGUM_2019_29_a0
P. V. Danchev. A note on commutative nil-clean corners in unital rings. The Bulletin of Irkutsk State University. Series Mathematics, Tome 29 (2019), pp. 3-9. http://geodesic.mathdoc.fr/item/IIGUM_2019_29_a0/

[1] Breaz S., Cǎlugǎreanu G., Danchev P., Micu T., “Nil-clean matrix rings”, Lin. Algebra $\$ Appl., 439:10 (2013), 3115–3119 | DOI | MR | Zbl

[2] Danchev P. V., “Strongly nil-clean corner rings”, Bull. Iran. Math. Soc., 43:5 (2017), 1333–1339 | MR | Zbl

[3] Danchev P. V., “Semi-boolean corner rings”, Internat. Math. Forum, 12:16 (2017), 795–802 | DOI

[4] Danchev P. V., “On corner subrings of unital rings”, Internat. J. Contemp. Math. Sci., 13:2 (2018), 59–62 | DOI | MR

[5] Danchev P. V., “Corners of invo-clean unital rings”, Pure Math. Sci., 7:1 (2018), 27–31 | DOI | MR

[6] Danchev P. V., “Feebly nil-clean unital rings”, Proc. Jangjeon Math. Soc., 21:1 (2018), 155–165 | MR | Zbl

[7] Danchev P. V., Lam T. Y., “Rings with unipotent units”, Publ. Math. Debrecen, 88:3–4 (2016), 449–466 | DOI | MR | Zbl

[8] Danchev P. V., McGovern W. Wm., “Commutative weakly nil clean unital rings”, J. Algebra, 425:5 (2015), 410–422 | DOI | MR | Zbl

[9] Diesl A. J., “Nil clean rings”, J. Algebra, 383:11 (2013), 197–211 | DOI | MR | Zbl

[10] Koşan M. T., Lee T. K., Zhou Y., When is every matrix over a division ring a sum of an idempotent and a nilpotent?, Lin. Algebra Appl., 450:11 (2014), 7–12 | DOI | MR | Zbl

[11] Lam T. Y., A First Course in Noncommutative Rings, Graduate Texts in Math., 131, Second Edition, Springer-Verlag, Berlin–Heidelberg–New York, 2001 | MR | Zbl