@article{IIGUM_2019_28_a0,
author = {E. G. Beley and A. A. Semenov},
title = {On propositional encoding of distinction property in finite sets},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--20},
year = {2019},
volume = {28},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2019_28_a0/}
}
TY - JOUR AU - E. G. Beley AU - A. A. Semenov TI - On propositional encoding of distinction property in finite sets JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2019 SP - 3 EP - 20 VL - 28 UR - http://geodesic.mathdoc.fr/item/IIGUM_2019_28_a0/ LA - ru ID - IIGUM_2019_28_a0 ER -
E. G. Beley; A. A. Semenov. On propositional encoding of distinction property in finite sets. The Bulletin of Irkutsk State University. Series Mathematics, Tome 28 (2019), pp. 3-20. http://geodesic.mathdoc.fr/item/IIGUM_2019_28_a0/
[1] Beley E. G., Semenov A. A., “On computational search for quasi-orthogonal systems of Latin squares which are close to orthogonal system”, International Journal of Open Information Technologies, 6:2 (2018), 22–30 (in Russian) | MR
[2] Semenov A. A. Decomposition representations of logical equations in inversion problems of discrete functions, News of the Russian Academy of Sciences, 2009, no. 5, 47–61 (in Russian) | Zbl
[3] Taranenko A. A., “Permanents of multidimensional matrices: Properties and applications”, Journal of Applied and Industrial Mathematics, 10:4 (2016), 567–604 | DOI | DOI | MR | Zbl
[4] Hall M., Combinatorics, Mir Publ, M., 1970, 424 pp. | MR
[5] Tseitin G. S., “About the complexity of the conclusion in the calculus of statements”, Notes of scientific seminars LOMI, 8, 1968, 234–259 (in Russian) | MR | Zbl
[6] CCU Irkutsk supercomputer SB RAS (the date of handling: 04.28.2019)
[7] Chen C., Lee R., Mathematical logic and automatic proof of theorems, Nauka Publ., M., 1983, 360 pp. (in Russian)
[8] Yablonsky S. V., Introduction to discrete mathematics, Nauka Publ., M., 1986, 384 pp. (in Russian) | MR
[9] Asin R., Nieuwenhuis R., Oliveras A., Rodriguez-Carbonell E., “Cardinality networks: a theoretical and empirical study”, Constraints, 16:2 (2011), 195–221 | DOI | MR | Zbl
[10] Bard G. V., Algebraic Cryptanalysis, last Edition, Springer Publishing Company, Incorporated, 2009 | DOI | MR | Zbl
[11] Beame P., Kautz H., Sabharwal A., “Understanding the power of clause learning”, IJCAI (18th International Joint Conference on Artificial Intelligence) (2003), 1194–1201
[12] Bessiere C., Katsirelos G., Narodytska N., Walsh T., “Circuit complexity and decompositions of global constraints”, Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, 2009, 412–418
[13] Biere A., “Splatz, Lingeling, Plingeling, Treengeling, YalSAT Entering the SAT Competition 2016”, Proc. of SAT Competition, eds. Balyo T., Heule M., Jarvisalo M., 2016, 44–45
[14] Bose R. C., “On the application of the properties of Galois fields to the problem of construction of hyper-Graeco-Latin squares”, Sankhya, 3 (1938), 323–338
[15] Bose R. C., Shrikhande S. S., Parker E. T., “Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture”, Canadian Journal of Mathematics, 1960, 189–203 | DOI | MR | Zbl
[16] Colbourn C. J., Dinitz J. H., Handbook of combinatorial designs, Second edition, CRC Press, 2010 | DOI | MR
[17] Cook S. A., “The complexity of theorem-proving procedures”, Third annual ACM symposium on Theory of computing (Ohio, USA, 1971), 151–159
[18] DIMACS Implementation Challenges, http://dimacs.rutgers.edu/Challenges/
[19] Egan J., Wanless I. M., “Enumeration of MOLS of small order”, Math. Comput., 85 (2016), 799–824 | DOI | MR | Zbl
[20] Haken A., “The intractability or resolution”, Theoretical Computer Science, 39 (1985), 297–308 | DOI | MR
[21] Heule M. J. H., Kullman O., Marec V. W., “Solving and Verifying the Boolean Pythagorean Triples Problem via Cube-and-Conquer”, SAT-2016, Lecture Notes in Computer Science, 9710, 2014, 228–245 | DOI | MR
[22] Konev B., Lisitsa A., “A SAT Attack on Erdos Discrepancy Problem”, SAT-2014, Lecture Notes in Computer Science, 8561, 2014, 219–226 | DOI | MR | Zbl
[23] Lam C. W. H., “The Search for a Finite Projective Plane of Order 10”, The American Mathematical Monthly, 1991, 305–318 | DOI | MR | Zbl
[24] Marques-Silva J. P., Lynce I., Malik S., “Conflict-Driven Clause Learning SAT solvers”, Handbook of Satisfiability, eds. Biere A., Heule M., van Maaren H., Walsh T., 2009, 131–153 | DOI
[25] McKay B. D., Wanless I. M., “A census of small Latin hypercubes”, SIAM J. Discrete Math., 22 (2008), 719–736 | DOI | MR | Zbl
[26] Mironov I., Zhang L., “Applications of SAT solvers to cryptanalysis of hash functions”, Lecture Notes in Computer Science, 4121, 2006, 102–115 | DOI | MR | Zbl
[27] Semenov A., Zaikin O., Otpuschennikov I., Kochemazov S., Ignatiev A., “On cryptographic attacks using backdoors for SAT”, The Thirty-Second AAAI Conference on Artificial Intelligence, AAAI'2018, 2018, 6641–6648
[28] Vatutin E., Kochemazov S., Zaikin O., Valyaev S., “Enumerating the Transversals for Diagonal Latin Squares of Small Order”, BOINC:FAST 2017, Ceur-WS, 1973, 2017, 6–14
[29] Vatutin E., Kochemazov S., Zaikin O., “Applying Volunteer and Parallel Computing for Enumerating Diagonal Latin Squares of Order 9”, Communication in Computer and Information Science, 753 (2017), 114–129 | DOI
[30] Williams R., Gomes C. P., Selman B., “Backdoors to typical case complexity”, 18th International Joint Conference on Articial Intelligence – IJCAI 2003, 1173–1178