@article{IIGUM_2018_26_a8,
author = {G. P. Egorychev},
title = {Determinants as combinatorial summation formulas over an algebra with a unique $n$-ary operation},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {121--127},
year = {2018},
volume = {26},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a8/}
}
TY - JOUR AU - G. P. Egorychev TI - Determinants as combinatorial summation formulas over an algebra with a unique $n$-ary operation JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2018 SP - 121 EP - 127 VL - 26 UR - http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a8/ LA - ru ID - IIGUM_2018_26_a8 ER -
%0 Journal Article %A G. P. Egorychev %T Determinants as combinatorial summation formulas over an algebra with a unique $n$-ary operation %J The Bulletin of Irkutsk State University. Series Mathematics %D 2018 %P 121-127 %V 26 %U http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a8/ %G ru %F IIGUM_2018_26_a8
G. P. Egorychev. Determinants as combinatorial summation formulas over an algebra with a unique $n$-ary operation. The Bulletin of Irkutsk State University. Series Mathematics, Tome 26 (2018), pp. 121-127. http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a8/
[1] Egorychev G. P., “New formulas for the permanent”, Dokl. Acad. Nauk USSR, 265:4 (1980), 784–787 (in Russian) | MR
[2] Egorychev G. P., Discrete mathematics. Permanents, Siberian Federal Univ., Krasnoyarsk, 2007, 272 pp. (in Russian) | MR
[3] Egorychev G. P., “New polynomial identities for determinants over commutative rings”, The Bulletin of Irkutsk State University. Series Mathematics, 5:4 (2012), 16–20 (in Russian) | Zbl
[4] Egorychev G. P., “The polarization theorem and polynomial Identities for matrix functions”, The Bulletin of Irkutsk State University. Series Mathematics, 21:4 (2017), 77–88 (in Russian) | DOI | Zbl
[5] Kochergin V. V., “About complexity of computation one-terms and powers”, Discrete Analysis, 27, Sobolev Institute of mathematics SB RAS Publ., Novosibirsk, 1994, 94–107 (in Russian)
[6] Kurosh A. G., “Multioperator rings and algebras”, Uspechi Math. Nauk, 24:1(145) (1969), 3–15 (in Russian) | MR | Zbl
[7] Pozhidaev A. P., “A simple factor-algebras and subalgebras of Jacobians algebras”, Sibirsk. Math. Zh., 39:3 (1998), 593–599 (in Russian) | MR | Zbl
[8] Filippov V. T., “On the n-Lie algebras of Jacobians”, Sibirsk. Math. Zh., 39:3 (1998), 660–669 (in Russian) | DOI | MR | Zbl
[9] Arvind V., Electronic Colloquium on Computational Complexity, Report No 103, 2009, 18 pp.
[10] Barvinok A. I., New permanent estimators via non-commutative determinants, 2000, 13 pp., arXiv: math/0007153
[11] Burago Yu. D., Zalgaller V. A., Geometric Inequalities, Springer Verlag, N. Y., 1988, 334 pp. | MR | Zbl
[12] Chakhmakhchyan L., Cerf N. J., Garcia-Patron R., Guantum-inspired algorithm for estimating the permanent of positive semidefinite matrices, 2017, 9 pp., arXiv: quant-ph/1609.02416
[13] Gelfand I. M., Retakh V. S., “Determinants of matrices over noncommutative rings”, Funct. Anal. Appl., 25:2 (1991), 91–102 | DOI | MR | Zbl
[14] Krattenthaler C., “Advanced determinant calculus: A complement”, Linear Algebra and Its Applications, 411 (2005), 68–166 | DOI | MR | Zbl
[15] Krob D., Leclerc B., “Minor identities for quasi-determinants and quantum determinants”, Commun. Math. Phys., 169 (1995), 23 pp. | DOI | MR | Zbl
[16] Muir T., The theory of determinants in the historical order of development, part 1, v. 1, London, 1890
[17] Zeilberger D., Proof of the alternating sign matrix conjecture, 1994, 84 pp., arXiv: math/9407211 | MR