Keywords: machine learning, forecasting, electric power systems, energy storage.
@article{IIGUM_2018_26_a5,
author = {D. N. Sidorov and A. V. Zhukov and I. R. Muftahov},
title = {Volterra equation based models for energy storage usage based on load forecast in {EPS} with renewable generation},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {76--90},
year = {2018},
volume = {26},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a5/}
}
TY - JOUR AU - D. N. Sidorov AU - A. V. Zhukov AU - I. R. Muftahov TI - Volterra equation based models for energy storage usage based on load forecast in EPS with renewable generation JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2018 SP - 76 EP - 90 VL - 26 UR - http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a5/ LA - ru ID - IIGUM_2018_26_a5 ER -
%0 Journal Article %A D. N. Sidorov %A A. V. Zhukov %A I. R. Muftahov %T Volterra equation based models for energy storage usage based on load forecast in EPS with renewable generation %J The Bulletin of Irkutsk State University. Series Mathematics %D 2018 %P 76-90 %V 26 %U http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a5/ %G ru %F IIGUM_2018_26_a5
D. N. Sidorov; A. V. Zhukov; I. R. Muftahov. Volterra equation based models for energy storage usage based on load forecast in EPS with renewable generation. The Bulletin of Irkutsk State University. Series Mathematics, Tome 26 (2018), pp. 76-90. http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a5/
[1] Anushina E. S., Short-term forecasting system electrical load, Ph.D. thesis spec. Electrotechnical complexes and systems, 2009 (in Russian)
[2] Karamov D. N., “Mathematical modeling of autonomous electricity supply power system using renewable energy sources”, Bulletin of Irkutsk State University, 2015, no. 9(104), 133–140 (in Russian)
[3] Tihonov J. E., Forecasting methods in market conditions, Nevinnomysskij tehnol. in-t (fil.) SevKavGTU, 2006 (in Russian)
[4] Ali Mohd H., Wu B., Dougal R. A., “An overview of SMES applications in power and energy systems”, IEEE Transactions on Sustainable Energy, 1:1 (2010), 38–47 | DOI
[5] Breiman L., “Random forests”, Machine learning, 45:1 (2001), 5–32 | DOI | MR | Zbl
[6] Di Silvestre M. L., Sanseverino E. R., “Modelling energy storage systems using Fourier analysis: An application for smart grids optimal management”, Applied Soft Computing, 14 (2014), 469–481 | DOI
[7] Dufo-López R., Lujano-Rojas J. M., Bernal-A. J., “Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems”, Applied Energy, 115 (2014), 242–253 | DOI
[8] Dunn B., Kamath H., Tarascon J.-M., “Electrical energy storage for the grid: a battery of choices”, Science, 334:6058 (2011), 928–935 | DOI
[9] Dursun E., Kilic O., “Comparative evaluation of different power management strategies of a stand-alone PV/Wind/PEMFC hybrid power system”, International Journal of Electrical Power Energy Systems, 34:1 (2012), 81–89 | DOI
[10] Drucker H., Burges C. J., Kaufman L. et al., “Support vector regression machines”, Advances in neural information processing systems, 1997, 155–161
[11] Friedman J. H., “Stochastic gradient boosting”, Computational Statistics Data Analysis, 38:4 (2002), 367–378 | DOI | MR | Zbl
[12] Karellas S., Tzouganatos N., “Comparison of the performance of compressed-air and hydrogen energy storage systems: Karpathos island case study”, Renewable and Sustainable Energy Reviews, 29 (2014), 865–882 | DOI
[13] Kuster C., Rezgui Y., Mourshed M., “Electrical load forecasting models: A critical systematic review”, Sustainable Cities and Society, 35 (2017), 257–270 | DOI
[14] Makarov Y. V., Du P., Kintner-Meyer M. C. W. et al., “Sizing energy storage to accommodate high penetration of variable energy resources”, IEEE Transactions on sustainable Energy, 3:1 (2012), 34–40 | DOI
[15] Muftahov I., Tynda A., Sidorov D., “Numeric solution of Volterra integral equations of the first kind with discontinuous kernels”, Journal of Computational and Applied Mathematics, 313 (2017), 119–128 | DOI | MR | Zbl
[16] Noriega J. R., Iyore O. D., Budime C. et al., “Characterization system for research on energy storage capacitors”, Review of Scientific Instruments, 84:5 (2013), 055109 | DOI
[17] Oza N. C., “Online bagging and boosting”, 2005 IEEE International Conference on Systems, Man and Cybernetics, v. 3, 2005, 2340–2345 | DOI
[18] Punys P., Baublys R., Kasiulis E. et al., “Assessment of renewable electricity generation by pumped storage power plants in EU Member States”, Renewable and Sustainable Energy Reviews, 26 (2013), 190–200 | DOI
[19] Sebastián R., Alzola R. P., “Flywheel energy storage systems: Review and simulation for an isolated wind power system”, Renewable and Sustainable Energy Reviews, 16:9 (2012), 6803–6813 | DOI
[20] Sidorov D. N., “Volterra equations of the first kind with discontinuous kernels in the theory of evolving systems control”, Studia Informatica Universalis, 9:3 (2011), 135–146
[21] Sidorov D. N., Integral dynamical models: singularities, signals and control, World Scientific, 2015, 300 pp. | DOI | MR | Zbl
[22] Sizikov V. S., “Further development of the new version of a posteriori choosing regularization parameter in ill-posed problems”, Intl. J. of Artificial Intelligence, 13:1 (2015), 184–199
[23] Tsuanyo D., Azoumah Y., Aussel D., Neveu P., “Modeling and optimization of batteryless hybrid PV (photovoltaic)/Diesel systems for off-grid applications”, Energy, 86 (2015), 152–163 | DOI
[24] Zhukov A. V., Sidorov D. N., Foley A. M., “Random forest based approach for concept drift handling”, International Conference on Analysis of Images, Social Networks and Texts, Springer, 2016, 69–77 | DOI