Mots-clés : reaction-diffusion system, exact solutions
@article{IIGUM_2018_26_a2,
author = {A. A. Kosov and E. I. Semenov},
title = {On periodic solutions of a nonlinear reaction-diffusion system},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {35--46},
year = {2018},
volume = {26},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a2/}
}
TY - JOUR AU - A. A. Kosov AU - E. I. Semenov TI - On periodic solutions of a nonlinear reaction-diffusion system JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2018 SP - 35 EP - 46 VL - 26 UR - http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a2/ LA - en ID - IIGUM_2018_26_a2 ER -
A. A. Kosov; E. I. Semenov. On periodic solutions of a nonlinear reaction-diffusion system. The Bulletin of Irkutsk State University. Series Mathematics, Tome 26 (2018), pp. 35-46. http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a2/
[1] Axiezer N. I., Elements of the theory of elliptic functions, OGIZ, Gostexizdat Publ., M., 1948, 292 pp. (in Russian)
[2] Kapcov O. V., Methods for the integration of partial differential equations, Fizmatlit Publ., M., 2009, 184 pp. (in Russian)
[3] Kosov A. A., Semenov E. I., “Multidimensional exact solutions to the reaction-diffusion system with power-law nonlinear terms”, Siberian Math. J., 58:4 (2001), 619–632 | DOI | MR | MR | Zbl
[4] Kosov A. A., Semenov E. I., “First integrals and periodic solutions of a system with power nonlinearities”, Journal of Applied and Industrial Mathematics, 12:1 (2018), 70–83 | DOI | MR | Zbl
[5] Kosov A. A., Semenov E. I., “On analytic periodic solutions of nonlinear differential equations with delay (lead)”, Izvestiya vysshih uchebnyh zavedenij. Matematika, 2018, no. 10, 34–42 (in Russian) | Zbl
[6] Polyanin A. D., Zaitsev V. F., Handbook of Nonlinear Partial Differential Equations, Second Edition, Updated, Revised and Extended, Chapman $\$ Hall/CRC Press, Boca Raton–London–New York, 2012, 1912 pp. | MR
[7] Polyanin A. D., Zajcev V. F., Nonlinear equations of mathematical physics, Tutorial. In 2 parts, v. 1, Yurait Publ., M., 2017, 324 pp. (in Russian)
[8] Polyanin A. D., Zajcev V. F., Nonlinear equations of mathematical physics, Tutorial. In 2 parts, v. 2, Yurajt Publ., M., 2017, 370 pp. (in Russian)
[9] Slin'ko M.G., Zelenyak T. I., Akramov T. A., Lavrent'ev M. M.-jr., Scepelev V. S., “Nonlinear dynamics of catalytic reactions and processes (review)”, Mat. modelirovanie, 9:12 (1997), 87–100 (in Russian) | MR
[10] Shmidt A. V., “Analysis of reaction-diffusion systems by the method of linear defining equations”, Zhurn. vychisl. matem. i matem. fiziki, 47:2 (2007), 256–268 (in Russian) | MR
[11] Cherniha R., King J. R., “Non-linear reaction-diffusion systems with variable diffusivities: Lie symmetries, ansatze and exact solutions”, J. Math. Anal. Appl., 308 (2005), 11–35 | DOI | MR | Zbl
[12] Galaktionov V. A., Svirshchevskii S. R., Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, Boca Raton, London; Taylor $\$ Francis Group, New York, 2007 | MR | Zbl
[13] Meirmanov A. M., Pukhnachov V. V., Shmarev S. I., Evolution Equations and Lagrangian Coordinates, Walter de Gruyter, Berlin–New York, 1997 | MR
[14] Polyanin A. D., Kutepov A. M., Vyazmin A. V., Kazenin D. A., Hydrodynamics, Mass and Heat Transfer in Chemical Engineering, Taylor $\$ Francis, London–NY, 2002, 387 pp.
[15] Nefedov N. N., Nikulin E. I., “Existence and Stability of Periodic Solutions for Reaction-Diffusion Equations in the Two-Dimensional Case”, Modeling and Analysis of Information Systems, 23:3 (2016), 342–348 | DOI | MR
[16] Vazquez J. L., The Porous Medium Equation: Mathematical Theory, Oxford Mathematical Monographs, Clarendon Press, Oxford, 2007 | MR