@article{IIGUM_2018_26_a1,
author = {A. L. Kazakov and P. A. Kuznetsov and L. F. Spevak},
title = {On a three-dimensional heat wave generated by boundary condition specified on a time-dependent manifold},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {16--34},
year = {2018},
volume = {26},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a1/}
}
TY - JOUR AU - A. L. Kazakov AU - P. A. Kuznetsov AU - L. F. Spevak TI - On a three-dimensional heat wave generated by boundary condition specified on a time-dependent manifold JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2018 SP - 16 EP - 34 VL - 26 UR - http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a1/ LA - ru ID - IIGUM_2018_26_a1 ER -
%0 Journal Article %A A. L. Kazakov %A P. A. Kuznetsov %A L. F. Spevak %T On a three-dimensional heat wave generated by boundary condition specified on a time-dependent manifold %J The Bulletin of Irkutsk State University. Series Mathematics %D 2018 %P 16-34 %V 26 %U http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a1/ %G ru %F IIGUM_2018_26_a1
A. L. Kazakov; P. A. Kuznetsov; L. F. Spevak. On a three-dimensional heat wave generated by boundary condition specified on a time-dependent manifold. The Bulletin of Irkutsk State University. Series Mathematics, Tome 26 (2018), pp. 16-34. http://geodesic.mathdoc.fr/item/IIGUM_2018_26_a1/
[1] Barenblatt G. I., Vishik M. I., “On finite velocity of propagation in problems of non-stationary filtration of a liquid or gas”, Prikl. Matematika i Mekhanika, 20:3 (1956), 411–417 (in Russian) | Zbl
[2] Bautin N. N., Leontovich E. A., Methods and techniques of the qualitative study of dynamical systems on the plane, Nauka, M., 1990, 490 pp. (in Russian)
[3] Zel'dovich Ya. B., Kompaneets A. S., “Towards a theory of heat conduction with thermal conductivity depending on the temperature”, Collection of Papers Dedicated to 70th Anniversary of A. F. Ioffe, Akad. Nauk SSSR Publ., M., 1950, 61–71 (in Russian)
[4] Kazakov A. L., Kuznetsov P. A., Spevak L. F., “On a Degenerate Boundary Value Problem for the Porous Medium Equation in Spherical Coordinates”, Trudy Instituta matematiki i mehaniki UrO RAN, 20, no. 1, 2014, 119–129 (in Russian)
[5] Kazakov A. L., Kuznetsov P. A., “On the Analytic Solutions of a Special Boundary Value Problem for a Nonlinear Heat Equation in Polar Coordinates”, Journal of Applied and Industrial Mathematics, 12:2 (2018), 1–11 | DOI | DOI | MR | Zbl
[6] Kazakov A. L., Lempert A. A., “Analytical and Numerical Investigation of a Nonlinear Filtration Boundary-Value Problem with Degeneration”, Vychislitel'nye tehnologii, 17:1 (2012), 57–68 (in Russian)
[7] Kazakov A. L., Lempert A. A., “Existence and Uniqueness of the Solution of the Boundary–Value Problem for a Parabolic Equation of Unsteady Filtration”, J. Appl. Mech. Tech. Phys., 54:2 (2013), 251–258 | DOI | MR | Zbl
[8] Kazakov A. L., Orlov Sv. S., Orlov S. S., “Construction and Study of Exact Solutions to a Nonlinear Heat Equation”, Siberian Mathematical Journal, 59:3 (2018), 427–441 | DOI | DOI | MR | Zbl
[9] Kazakov A. L., Spevak L. F., “Boundary Elements Method and Power Series Method for One-Dimensional Nonlinear Filtration Problems”, The Bulletin of Irkutsk State University. Series Mathematics, 5:2 (2012), 2–17 (in Russian) | Zbl
[10] Kudryashov N. A., Sinelshchikov D. I., “Analytical Solutions for Nonlinear Convection–Diffusion Equations with Nonlinear Sources”, Automatic Control and Computer Sciences, 51:7 (2017), 621–626 | DOI | DOI | MR
[11] Kudryashov N. A., Chmykhov M. A., “Approximate Solutions to One–Dimensional Nonlinear Heat Conduction Problems with a Given Flux”, Computational Mathematics and Mathematical Physics, 47:1 (2007), 107–117 | DOI | MR | Zbl
[12] Kuznetsov P. A., “On Boundary Value Problem with Degeneration for Nonlinear Porous Medium Equation with Boundary Conditions on the Closed Surface”, The Bulletin of Irkutsk State University. Series Mathematics, 9 (2014), 61–74 (in Russian) | Zbl
[13] Polyanin A. D., Zaitsev V. F., Zhurov A. I., Nonlinear equations of mathematical physics and mechanics. Methods of solution, Urait Publishing House, M., 2017, 256 pp. (in Russian)
[14] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Blow-up in Quasilinear Parabolic Equations, Walter de Gruyte Berlin, NY, 1995, 534 pp. | MR | MR | Zbl
[15] Sidorov A. F., Selected Works: Mathematics. Mechanics, Fizmatlit Publ., M., 2001, 576 pp. (in Russian) | MR
[16] Banerjee P. K., Butterheld R., Boundary element methods in engineering science, McGraw-Hill Book Company Limited, UK, 1981, 494 pp. | MR | Zbl
[17] Kazakov A. L., Spevak L. F., “An analytical and numerical study of a nonlinear parabolic equation with degeneration for the cases of circular and spherical symmetry”, Applied Mathematical Modelling, 40:2 (2016), 1333–1343 | DOI | MR
[18] Vazquez J. L., The Porous Medium Equation: Mathematical Theory, Clarendon Press, Oxford, 2007, 648 pp. | MR