@article{IIGUM_2018_25_a6,
author = {S. V. Svinina},
title = {On the stability of the spline-collocation difference scheme for a semilinear differential-algebraic index system (1,0)},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {93--108},
year = {2018},
volume = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a6/}
}
TY - JOUR AU - S. V. Svinina TI - On the stability of the spline-collocation difference scheme for a semilinear differential-algebraic index system (1,0) JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2018 SP - 93 EP - 108 VL - 25 UR - http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a6/ LA - ru ID - IIGUM_2018_25_a6 ER -
%0 Journal Article %A S. V. Svinina %T On the stability of the spline-collocation difference scheme for a semilinear differential-algebraic index system (1,0) %J The Bulletin of Irkutsk State University. Series Mathematics %D 2018 %P 93-108 %V 25 %U http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a6/ %G ru %F IIGUM_2018_25_a6
S. V. Svinina. On the stability of the spline-collocation difference scheme for a semilinear differential-algebraic index system (1,0). The Bulletin of Irkutsk State University. Series Mathematics, Tome 25 (2018), pp. 93-108. http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a6/
[1] Berezin M. V., Zhidkov N. P., Computing Methods, v. 1, Nauka Publ., M., 1966, 632 pp. (in Russian)
[2] Gaidomak S. V., “On the stability of an implicit spline collocation difference scheme for linear partial differential algebraic equations”, Comput. Math. Math. Phys., 53:9 (2013), 1272–1291 | DOI | MR | Zbl
[3] Gaidomak S. V., “The canonical structure of a pencil of degenerate matrix functions”, Russian Math., 56:2 (2012), 19–28 | DOI | MR | Zbl
[4] Gaidomak S. V., “Boundary value problem for a first-order linear parabolic system”, Comput. Math. Math. Phys., 54:4 (2014), 620–630 | DOI | MR | Zbl
[5] Gaidomak S. V., “Numerical solution of linear differential-algebraic systems of partial differential equations”, Comput. Math. Math. Phys., 55:9 (2015), 1501–1514 | DOI | MR | Zbl
[6] Demidenko G. V., Uspenskii S. V., Equations and systems unsolved for the highest derivative, Nauchnaya Kniga Publ., Novosibirsk, 1998, 438 pp. (in Russian)
[7] Kantorovich L. V., Akilov G. P., Functional Analysis, Nauka Publ., M., 1977, 744 pp. (in Russian)
[8] Lancaster P., The theory of matrices, Nauka Publ., M., 1982, 272 pp. (in Russian)
[9] Oleinik O. A., Venttsel' T. D., “The first boundary problem and the Cauchy problem for quasi-linear equations of parabolic type”, Mat. Sb. (N.S.), 41(83):1 (1957), 105–128 (in Russian) | Zbl
[10] Rozhdestvensky B. L., Yanenko N. N., Systems of quasilinear equations and their application to gas dynamics, Nauka Publ., M., 1978, 668 pp.
[11] Rushchinskii V. M., “Space linear and nonlinear models of copper generators”, Problems of Identification and Modeling, 1968, 8–15 (in Russian)
[12] Samarskii A. A., Gulin A. V., Stability of difference schemes, Editorial URSS Publ., M., 2009, 384 pp. (in Russian)