@article{IIGUM_2018_25_a5,
author = {P. S. Petrenko},
title = {Robust controllability of non-stationary differential-algebraic equations},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {79--92},
year = {2018},
volume = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a5/}
}
P. S. Petrenko. Robust controllability of non-stationary differential-algebraic equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 25 (2018), pp. 79-92. http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a5/
[1] Gantmacher F. R., The theory of matrices, Nauka Publ., M., 1988, 548 pp. (in Russian)
[2] Trenogin V. A., Functional analysis, Nauka Publ., M., 1980, 496 pp. (in Russian)
[3] Brenan K. E., Campbell S. L., Petzold L. R., Numerical solution of initial-value problems in differential-algebraic equations, SIAM, 1996, 269 pp. | MR | Zbl
[4] Campbell S. L., Griepentrog E., “Solvability of general differential algebraic equations”, SIAM J. Sci. Stat. Comp., 16 (1995), 257–270 | DOI | MR | Zbl
[5] Chou J. H., Chen S. H., Fung R. F., “Sufficient conditions for the controllability of linear descriptor systems with both time-varying structured and unstructured parameter uncertainties”, IMA J. Math. Control Inform., 18:4 (2001), 469–477 | DOI | MR | Zbl
[6] Chou J. H., Chen S. H., Zhang Q.-L., “Robust controllability for linear uncertain descriptor systems”, Linear Algebra Appl., 414:2–3 (2006), 632–651 | DOI | MR | Zbl
[7] Dai L., Singular control system, Lecture notes in control and information sciences, 118, Springer-Verlag, 1989 | DOI | MR
[8] Lin C., Wang J. L., Soh C.-B., “Necessary and sufficient conditions for the controllability of linear interval descriptor systems”, Automatica, 34:3 (1998), 363–367 | DOI | MR | Zbl
[9] Lin C., Wang J. L., Soh C.-B., “Robust C-controllability and/or C-observability for uncertain descriptor systems with interval perturbation in all matrices”, IEEE Trans. Automat. Control, 44:9 (1999), 1768–1773 | DOI | MR | Zbl
[10] C. Lin, J. L. Wang, C.-B. Soh, G. H. Yang, “Robust controllability and robust closed-loop stability with static output feedback for a class of uncertain descriptor systems”, Linear Algebra Appl., 297:1–3 (1999), 133–155 | DOI | MR | Zbl
[11] Mehrmann V., Stykel T., “Descriptor systems: a general mathematical framework for modelling, simulation and control”, Automatisierungstechnik, 54:8 (2006), 405–415 | DOI
[12] Petrenko P. S., “Differential controllability of linear systems of differential-algebraic equations”, Journal of Siberian Federal University. Mathematics Physics, 10:3 (2017), 320–329 | DOI | MR
[13] Petrenko P. S., “Local R-observability of differential-algebraic equations”, Journal of Siberian Federal University. Mathematics Physics, 9:3 (2016), 353–363 | DOI
[14] Shcheglova A. A., “Controllability of nonlinear algebraic differential systems”, Automation and Remote Control, 69:10 (2008), 1700–1722 | DOI | MR | Zbl
[15] Shcheglova A. A., “The solvability of the initial problem for a degenerate linear hybrid system with variable coefficients”, Russian Mathematics, 54:9 (2010), 49–61 | DOI | MR | Zbl
[16] Shcheglova A. A., Petrenko P. S., “Stabilizability of solutions to linear and nonlinear differential-algebraic equations”, Journal of Mathematical Sciences, 196:4 (2014), 596–615 | DOI | MR | Zbl
[17] Shcheglova A. A., Petrenko P. S., “Stabilization of solutions for nonlinear differential-algebraic equations”, Automation and remote control, 76:4 (2015), 573–588 | DOI | MR | Zbl
[18] Shcheglova A. A., Petrenko P. S., “The R-observability and R-controllability of linear differential-algebraic systems”, Russian Mathematics, 56:3 (2012), 66–82 | DOI | MR | Zbl