@article{IIGUM_2018_25_a3,
author = {V. A. Dykhta and O. N. Samsonyuk},
title = {Feedback minimum principle for impulsive processes},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {46--62},
year = {2018},
volume = {25},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a3/}
}
V. A. Dykhta; O. N. Samsonyuk. Feedback minimum principle for impulsive processes. The Bulletin of Irkutsk State University. Series Mathematics, Tome 25 (2018), pp. 46-62. http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a3/
[1] Gurman V. I., Degenerate problems of optimal control, Nauka Publ., M., 1977, 304 pp. (in Russian)
[2] Dykhta V. A., “Weakly monotone solutions of the Hamilton-Jacobi inequality and optimal conditions with positional controls”, Autom. Remote Control, 75:5 (2014), 829–844 | DOI | MR | Zbl
[3] Dykhta V. A., “Nonstandard duality and nonlocal necessary optimality conditions in nonconvex optimal control problems”, Autom. Remote Control, 75:11 (2014), 1906–1921 | DOI | MR | Zbl
[4] Dykhta V. A., “Variational necessary optimality conditions with feedback descent controls for optimal control problems”, Doklady Mathematics, 91:3 (2015), 394–396 | DOI | DOI | MR | Zbl
[5] Dykhta V. A., Samsonyuk O. N., Optimal impulsive control with applications, Fizmatlit Publ., M., 2000, 256 pp. (in Russian)
[6] Dykhta V. A., Samsonyuk O. N., Hamilton-Jacobi inequalities and variational optimality conditions, Irkutsk State University Publ., Irkutsk, 2015, 150 pp. (in Russian)
[7] Zavalishchin S. T., Sesekin A. N., Impulsive processes: models and applications, Nauka Publ., M., 1991, 256 pp. (in Russian)
[8] Krotov V. F., Gurman V. I., Methods and problems of optimal control, Nauka Publ., M., 1973, 448 pp. (in Russian)
[9] Miller B. M., “Optimality condition in the control problem for a system described by a measure differential equation”, Autom. Remote Control, 43:6 (1982), 752–761 ; 4, 505–513 | MR | Zbl
[10] Miller B. M., “Conditions for the optimality in problems of generalized control. I; II”, Autom. Remote Control, 1992, no. 3, 362–370 ; no. 4, 505–513 | Zbl
[11] Miller B. M., “Method of discontinuous time change in problems of control of impulse and discrete-continuous systems”, Autom. Remote Control, 54:12 (1993), 1727–1750 | MR | Zbl
[12] Miller B. M., Rubinovich E. Ya., Optimization of dynamic systems with impulsive controls, Nauka Publ., M., 2005, 429 pp. (in Russian)
[13] Miller B. M., Rubinovich E. Ya., “Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations”, Autom. Remote Control, 74:12 (2013), 1969–2006 | DOI | MR | Zbl
[14] Samsonyuk O. N., “Monotonicity of Lyapunov type functions for impulsive control systems”, The Bulletin of Irkutsk State University. Series Mathematics, 7 (2014), 104–123 (in Russian) | Zbl
[15] Samsonyuk O., “Invariant sets for nonlinear impulsive control systems”, Autom. Remote Control, 76:3 (2015), 405–418 | DOI | MR | Zbl
[16] Filippova T. F., “Differential equations for ellipsoidal estimates for reachable sets of a nonlinear dynamical control system”, Proceedings of the Steklov Institute of Mathematics, 271:S1 (2010), 75–84 | DOI | MR | Zbl
[17] Arutyunov A. V., Karamzin D. Yu., Pereira F. L., “On constrained impulsive control problems”, J. Math. Sci., 165 (2010), 654–688 | DOI | MR | Zbl
[18] Bressan A., Rampazzo F., “Impulsive control systems without commutativity assumptions”, Optim. Theory Appl., 81:3 (1994), 435–457 | DOI | MR | Zbl
[19] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth analysis and control theory, Springer-Verlag, New York, 1998, 277 pp. | MR | Zbl
[20] Daryin A. N., Kurzhanski A. B., “Dynamic programming for impulse control”, Ann. Reviews in Control., 32 (2008), 213–227 | DOI
[21] Dykhta V., Samsonyuk O., “Applications of Hamilton-Jacobi inequalities for classical and impulsive optimal control problems”, European Journal of Control, 17 (2011), 55–69 | DOI | MR | Zbl
[22] Fraga S. L., Pereira F. L., “On the feedback control of impulsive dynamic systems”, Proceeding of the 47th IEEE Conference on Decision and Control, 2008, 2135–2140
[23] Karamzin D. Yu., “Necessary conditions of the minimum in impulsive control problems with vector measures”, J. of Math. Sci., 139 (2006), 7087–7150 | DOI | MR | Zbl
[24] Miller B. M., “The generalized solutions of nonlinear optimization problems with impulse control”, SIAM J. Control Optim., 34 (1996), 1420–1440 | DOI | MR | Zbl
[25] Motta M., Rampazzo F., “Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls”, Differential Integral Equations, 8 (1995), 269–288 | MR | Zbl
[26] Pereira F. L., Silva G. N., “Necessary conditions of optimality for vector-valued impulsive control problems”, Syst. Control Lett., 40 (2000), 205–215 | DOI | MR | Zbl
[27] Sorokin S., Staritsyn M., “Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control”, Numerical Algebra, Control and Optimization, 7:2 (2017), 201–210 | DOI | MR | Zbl
[28] Vinter R. B., Pereira F. L., “A maximum principle for optimal processes with discontinuous trajectories”, SIAM J. Control Optim., 26:1 (1988), 205–229 | DOI | MR | Zbl