Feedback minimum principle for impulsive processes
The Bulletin of Irkutsk State University. Series Mathematics, Tome 25 (2018), pp. 46-62
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider an optimal impulsive control problem with a terminal functional and trajectories of bounded variation. The control system we consider has a bilinear structure with respect to the state and control variables and is governed by nonnegative vector Borel measures under constraints on their total variation. This problem is the impulsive-trajectory extension for the corresponding classical optimal control problem, which, in general, does not have optimal solutions with measurable controls. We do not posit any commutativity assumptions guaranteeing the well-posedness property for the impulsive extension. The so-called singular space-time transformation is used to define an individual trajectory and transform the impulsive system to an auxiliary ordinary control system. The aim of this paper is to prove a nonlocal necessary optimality condition for impulsive processes. This condition is based on feedback controls providing descent directions for the functional. This necessary condition is called the feedback minimum principle. It is a generalization of the corresponding principle for classical optimal control problems. The feedback minimum principle is formulated within the framework of the generalized maximum principle for impulsive processes. An example illustrating the optimality condition is considered.
Keywords: impulsive control, trajectory of bounded variation, feedback control, optimality condition.
@article{IIGUM_2018_25_a3,
     author = {V. A. Dykhta and O. N. Samsonyuk},
     title = {Feedback minimum principle for impulsive processes},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {46--62},
     year = {2018},
     volume = {25},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a3/}
}
TY  - JOUR
AU  - V. A. Dykhta
AU  - O. N. Samsonyuk
TI  - Feedback minimum principle for impulsive processes
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2018
SP  - 46
EP  - 62
VL  - 25
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a3/
LA  - ru
ID  - IIGUM_2018_25_a3
ER  - 
%0 Journal Article
%A V. A. Dykhta
%A O. N. Samsonyuk
%T Feedback minimum principle for impulsive processes
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2018
%P 46-62
%V 25
%U http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a3/
%G ru
%F IIGUM_2018_25_a3
V. A. Dykhta; O. N. Samsonyuk. Feedback minimum principle for impulsive processes. The Bulletin of Irkutsk State University. Series Mathematics, Tome 25 (2018), pp. 46-62. http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a3/

[1] Gurman V. I., Degenerate problems of optimal control, Nauka Publ., M., 1977, 304 pp. (in Russian)

[2] Dykhta V. A., “Weakly monotone solutions of the Hamilton-Jacobi inequality and optimal conditions with positional controls”, Autom. Remote Control, 75:5 (2014), 829–844 | DOI | MR | Zbl

[3] Dykhta V. A., “Nonstandard duality and nonlocal necessary optimality conditions in nonconvex optimal control problems”, Autom. Remote Control, 75:11 (2014), 1906–1921 | DOI | MR | Zbl

[4] Dykhta V. A., “Variational necessary optimality conditions with feedback descent controls for optimal control problems”, Doklady Mathematics, 91:3 (2015), 394–396 | DOI | DOI | MR | Zbl

[5] Dykhta V. A., Samsonyuk O. N., Optimal impulsive control with applications, Fizmatlit Publ., M., 2000, 256 pp. (in Russian)

[6] Dykhta V. A., Samsonyuk O. N., Hamilton-Jacobi inequalities and variational optimality conditions, Irkutsk State University Publ., Irkutsk, 2015, 150 pp. (in Russian)

[7] Zavalishchin S. T., Sesekin A. N., Impulsive processes: models and applications, Nauka Publ., M., 1991, 256 pp. (in Russian)

[8] Krotov V. F., Gurman V. I., Methods and problems of optimal control, Nauka Publ., M., 1973, 448 pp. (in Russian)

[9] Miller B. M., “Optimality condition in the control problem for a system described by a measure differential equation”, Autom. Remote Control, 43:6 (1982), 752–761 ; 4, 505–513 | MR | Zbl

[10] Miller B. M., “Conditions for the optimality in problems of generalized control. I; II”, Autom. Remote Control, 1992, no. 3, 362–370 ; no. 4, 505–513 | Zbl

[11] Miller B. M., “Method of discontinuous time change in problems of control of impulse and discrete-continuous systems”, Autom. Remote Control, 54:12 (1993), 1727–1750 | MR | Zbl

[12] Miller B. M., Rubinovich E. Ya., Optimization of dynamic systems with impulsive controls, Nauka Publ., M., 2005, 429 pp. (in Russian)

[13] Miller B. M., Rubinovich E. Ya., “Discontinuous solutions in the optimal control problems and their representation by singular space-time transformations”, Autom. Remote Control, 74:12 (2013), 1969–2006 | DOI | MR | Zbl

[14] Samsonyuk O. N., “Monotonicity of Lyapunov type functions for impulsive control systems”, The Bulletin of Irkutsk State University. Series Mathematics, 7 (2014), 104–123 (in Russian) | Zbl

[15] Samsonyuk O., “Invariant sets for nonlinear impulsive control systems”, Autom. Remote Control, 76:3 (2015), 405–418 | DOI | MR | Zbl

[16] Filippova T. F., “Differential equations for ellipsoidal estimates for reachable sets of a nonlinear dynamical control system”, Proceedings of the Steklov Institute of Mathematics, 271:S1 (2010), 75–84 | DOI | MR | Zbl

[17] Arutyunov A. V., Karamzin D. Yu., Pereira F. L., “On constrained impulsive control problems”, J. Math. Sci., 165 (2010), 654–688 | DOI | MR | Zbl

[18] Bressan A., Rampazzo F., “Impulsive control systems without commutativity assumptions”, Optim. Theory Appl., 81:3 (1994), 435–457 | DOI | MR | Zbl

[19] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth analysis and control theory, Springer-Verlag, New York, 1998, 277 pp. | MR | Zbl

[20] Daryin A. N., Kurzhanski A. B., “Dynamic programming for impulse control”, Ann. Reviews in Control., 32 (2008), 213–227 | DOI

[21] Dykhta V., Samsonyuk O., “Applications of Hamilton-Jacobi inequalities for classical and impulsive optimal control problems”, European Journal of Control, 17 (2011), 55–69 | DOI | MR | Zbl

[22] Fraga S. L., Pereira F. L., “On the feedback control of impulsive dynamic systems”, Proceeding of the 47th IEEE Conference on Decision and Control, 2008, 2135–2140

[23] Karamzin D. Yu., “Necessary conditions of the minimum in impulsive control problems with vector measures”, J. of Math. Sci., 139 (2006), 7087–7150 | DOI | MR | Zbl

[24] Miller B. M., “The generalized solutions of nonlinear optimization problems with impulse control”, SIAM J. Control Optim., 34 (1996), 1420–1440 | DOI | MR | Zbl

[25] Motta M., Rampazzo F., “Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls”, Differential Integral Equations, 8 (1995), 269–288 | MR | Zbl

[26] Pereira F. L., Silva G. N., “Necessary conditions of optimality for vector-valued impulsive control problems”, Syst. Control Lett., 40 (2000), 205–215 | DOI | MR | Zbl

[27] Sorokin S., Staritsyn M., “Feedback necessary optimality conditions for a class of terminally constrained state-linear variational problems inspired by impulsive control”, Numerical Algebra, Control and Optimization, 7:2 (2017), 201–210 | DOI | MR | Zbl

[28] Vinter R. B., Pereira F. L., “A maximum principle for optimal processes with discontinuous trajectories”, SIAM J. Control Optim., 26:1 (1988), 205–229 | DOI | MR | Zbl