Existence of periodic solution to one dimensional
The Bulletin of Irkutsk State University. Series Mathematics, Tome 25 (2018), pp. 3-18
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we consider a drying and wetting process in porous medium to create a mathematical model for concrete carbonation. The process is assumed to be characterized by the growth of the air zone and a diffusion of moisture in the air zone. Under the assumption we proposed a one-dimensional free boundary problem describing adsorption phenomena in a porous medium. The free boundary problem it to find a curve representing the air zone and the relative humidity of the air zone. For the problem we also established existence, uniqueness and a large time behavior of solutions. Here, by improving the method for uniform estimates we can show the existence of a periodic solution of the problem. Also, the extension method is applied in the proof. This idea is quite important and new since the value of the humidity on the free boundary is unknown.
Keywords: free boundary problem, periodic solution, fixed point argument.
@article{IIGUM_2018_25_a0,
     author = {T. Aiki and N. Sato},
     title = {Existence of periodic solution to one dimensional},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {3--18},
     year = {2018},
     volume = {25},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a0/}
}
TY  - JOUR
AU  - T. Aiki
AU  - N. Sato
TI  - Existence of periodic solution to one dimensional
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2018
SP  - 3
EP  - 18
VL  - 25
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a0/
LA  - en
ID  - IIGUM_2018_25_a0
ER  - 
%0 Journal Article
%A T. Aiki
%A N. Sato
%T Existence of periodic solution to one dimensional
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2018
%P 3-18
%V 25
%U http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a0/
%G en
%F IIGUM_2018_25_a0
T. Aiki; N. Sato. Existence of periodic solution to one dimensional. The Bulletin of Irkutsk State University. Series Mathematics, Tome 25 (2018), pp. 3-18. http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a0/

[1] Aiki T., “Periodic stability of solutions to two-phase Stefan problems with nonlinear boundary condition”, Nonlinear Anal. TMA, 22 (1994), 1445–1474 | DOI | MR | Zbl

[2] Aiki T., Kumazaki K., “Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process”, Physica B, 407 (2012), 1424–1426 | DOI

[3] Aiki T., Kumazaki K., “Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process”, Adv. Math. Sci. Appl., 21 (2011), 361–381 | MR | Zbl

[4] Aiki T., Kumazaki K., Murase Y., Sato N., “A two-scale model for concrete carbonation process in a three dimensional domain”, Sūrikaisekikenkyūsho Kōkyūroku, 2016, no. 1997, 133–139

[5] Aiki T., Murase Y., Sato N., Shirakawa K., “A mathematical model for a hysteresis appearing in adsorption phenomena”, Sūrikaisekikenkyūsho Kōkyūroku, 2013, no. 1856, 1–11

[6] Aiki T., Murase Y., “On a large time behavior of a solution to a one-dimensional free boundary problem for adsorption phenomena”, J. Math. Anal. Appl., 445 (2017), 837–854 | DOI | MR | Zbl

[7] Damlamian A., Kenmochi N., “Periodicity and almost periodicity of solutions to a multi-phase Stefan Problem in several space variables”, Nonlinear Anal. TMA., 12 (1988), 921–934 | DOI | MR | Zbl

[8] Kumazaki K., “Continuous dependence of a solution of a free boundary problem describing adsorption phenomenon for a given data”, Adv. Math. Sci. Appl., 25 (2016), 289–305 | MR

[9] Kumazaki K., “Measurabllity of a solution of a free boundary problem describing adsorption phenomenon”, Adv. Math. Sci. Appl., 26 (2017), 19–27 | MR

[10] Kumazaki K., Aiki T., “Uniqueness of a solution for some parabolic type equation with hysteresis in three dimensions”, Networks and Heterogeneous Media, 9 (2014), 683–707 | DOI | MR | Zbl

[11] Kumazaki K., Aiki T., Sato N., Murase Y., “Multiscale model for moisture transport with adsorption phenomenon in concrete materials”, Appl. Anal., 97 (2018), 41–54 | DOI | MR | Zbl

[12] Sato N., Aiki T., Murase Y., Shirakawa K., “A one dimensional free boundary problem for adsorption phenomena”, Netw. Heterog. Media, 9 (2014), 655–668 | DOI | MR | Zbl