@article{IIGUM_2018_25_a0,
author = {T. Aiki and N. Sato},
title = {Existence of periodic solution to one dimensional},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--18},
year = {2018},
volume = {25},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a0/}
}
T. Aiki; N. Sato. Existence of periodic solution to one dimensional. The Bulletin of Irkutsk State University. Series Mathematics, Tome 25 (2018), pp. 3-18. http://geodesic.mathdoc.fr/item/IIGUM_2018_25_a0/
[1] Aiki T., “Periodic stability of solutions to two-phase Stefan problems with nonlinear boundary condition”, Nonlinear Anal. TMA, 22 (1994), 1445–1474 | DOI | MR | Zbl
[2] Aiki T., Kumazaki K., “Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process”, Physica B, 407 (2012), 1424–1426 | DOI
[3] Aiki T., Kumazaki K., “Well-posedness of a mathematical model for moisture transport appearing in concrete carbonation process”, Adv. Math. Sci. Appl., 21 (2011), 361–381 | MR | Zbl
[4] Aiki T., Kumazaki K., Murase Y., Sato N., “A two-scale model for concrete carbonation process in a three dimensional domain”, Sūrikaisekikenkyūsho Kōkyūroku, 2016, no. 1997, 133–139
[5] Aiki T., Murase Y., Sato N., Shirakawa K., “A mathematical model for a hysteresis appearing in adsorption phenomena”, Sūrikaisekikenkyūsho Kōkyūroku, 2013, no. 1856, 1–11
[6] Aiki T., Murase Y., “On a large time behavior of a solution to a one-dimensional free boundary problem for adsorption phenomena”, J. Math. Anal. Appl., 445 (2017), 837–854 | DOI | MR | Zbl
[7] Damlamian A., Kenmochi N., “Periodicity and almost periodicity of solutions to a multi-phase Stefan Problem in several space variables”, Nonlinear Anal. TMA., 12 (1988), 921–934 | DOI | MR | Zbl
[8] Kumazaki K., “Continuous dependence of a solution of a free boundary problem describing adsorption phenomenon for a given data”, Adv. Math. Sci. Appl., 25 (2016), 289–305 | MR
[9] Kumazaki K., “Measurabllity of a solution of a free boundary problem describing adsorption phenomenon”, Adv. Math. Sci. Appl., 26 (2017), 19–27 | MR
[10] Kumazaki K., Aiki T., “Uniqueness of a solution for some parabolic type equation with hysteresis in three dimensions”, Networks and Heterogeneous Media, 9 (2014), 683–707 | DOI | MR | Zbl
[11] Kumazaki K., Aiki T., Sato N., Murase Y., “Multiscale model for moisture transport with adsorption phenomenon in concrete materials”, Appl. Anal., 97 (2018), 41–54 | DOI | MR | Zbl
[12] Sato N., Aiki T., Murase Y., Shirakawa K., “A one dimensional free boundary problem for adsorption phenomena”, Netw. Heterog. Media, 9 (2014), 655–668 | DOI | MR | Zbl