On the numerical range and numerical radius of the Volterra operator
The Bulletin of Irkutsk State University. Series Mathematics, Tome 24 (2018), pp. 102-108
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we investigated the numerical range and the numerical radius of the classical Volterra operator on the complex space $L^2[0,1]$. In particular, we determined the numerical range, the numerical radius of real and imaginary part of the Volterra operator.
Keywords:
Volterra operator, numerical range, numerical radius.
@article{IIGUM_2018_24_a7,
author = {L. Khadkhuu and D. Tsedenbayar},
title = {On the numerical range and numerical radius of the {Volterra} operator},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {102--108},
publisher = {mathdoc},
volume = {24},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_24_a7/}
}
TY - JOUR AU - L. Khadkhuu AU - D. Tsedenbayar TI - On the numerical range and numerical radius of the Volterra operator JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2018 SP - 102 EP - 108 VL - 24 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2018_24_a7/ LA - en ID - IIGUM_2018_24_a7 ER -
%0 Journal Article %A L. Khadkhuu %A D. Tsedenbayar %T On the numerical range and numerical radius of the Volterra operator %J The Bulletin of Irkutsk State University. Series Mathematics %D 2018 %P 102-108 %V 24 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2018_24_a7/ %G en %F IIGUM_2018_24_a7
L. Khadkhuu; D. Tsedenbayar. On the numerical range and numerical radius of the Volterra operator. The Bulletin of Irkutsk State University. Series Mathematics, Tome 24 (2018), pp. 102-108. http://geodesic.mathdoc.fr/item/IIGUM_2018_24_a7/