On the numerical range and numerical radius of the Volterra operator
The Bulletin of Irkutsk State University. Series Mathematics, Tome 24 (2018), pp. 102-108

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we investigated the numerical range and the numerical radius of the classical Volterra operator on the complex space $L^2[0,1]$. In particular, we determined the numerical range, the numerical radius of real and imaginary part of the Volterra operator.
Keywords: Volterra operator, numerical range, numerical radius.
@article{IIGUM_2018_24_a7,
     author = {L. Khadkhuu and D. Tsedenbayar},
     title = {On the numerical range and numerical radius of the {Volterra} operator},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {102--108},
     publisher = {mathdoc},
     volume = {24},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_24_a7/}
}
TY  - JOUR
AU  - L. Khadkhuu
AU  - D. Tsedenbayar
TI  - On the numerical range and numerical radius of the Volterra operator
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2018
SP  - 102
EP  - 108
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2018_24_a7/
LA  - en
ID  - IIGUM_2018_24_a7
ER  - 
%0 Journal Article
%A L. Khadkhuu
%A D. Tsedenbayar
%T On the numerical range and numerical radius of the Volterra operator
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2018
%P 102-108
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2018_24_a7/
%G en
%F IIGUM_2018_24_a7
L. Khadkhuu; D. Tsedenbayar. On the numerical range and numerical radius of the Volterra operator. The Bulletin of Irkutsk State University. Series Mathematics, Tome 24 (2018), pp. 102-108. http://geodesic.mathdoc.fr/item/IIGUM_2018_24_a7/