On certain subclasses of analytic functions with varying arguments of coefficients
The Bulletin of Irkutsk State University. Series Mathematics, Tome 23 (2018), pp. 80-95 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we introduce and study the class$ \mathcal{VR}_{\delta ,\eta }(n,\lambda ,\alpha ) $of analytic functions with varying arguments of coefficients. We obtain coefficients inequalities, distortion theorems involving fractional calculus, radii of close to convexity, starlikeness and convexity and square root transformation for functions in the class $\mathcal{VR}_{\delta ,\eta }(n,\lambda ,\alpha )$. Finally, integral convolution for functions in this class are considered.
Keywords: analytic functions, fractional calculus operators, varying arguments of coefficients, square root transformation, integral convolution.
Mots-clés : Hadamard product
@article{IIGUM_2018_23_a5,
     author = {H. M. Zayed and M. K. Aouf and Maslina Darus},
     title = {On certain subclasses of analytic functions with varying arguments of coefficients},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {80--95},
     year = {2018},
     volume = {23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a5/}
}
TY  - JOUR
AU  - H. M. Zayed
AU  - M. K. Aouf
AU  - Maslina Darus
TI  - On certain subclasses of analytic functions with varying arguments of coefficients
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2018
SP  - 80
EP  - 95
VL  - 23
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a5/
LA  - en
ID  - IIGUM_2018_23_a5
ER  - 
%0 Journal Article
%A H. M. Zayed
%A M. K. Aouf
%A Maslina Darus
%T On certain subclasses of analytic functions with varying arguments of coefficients
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2018
%P 80-95
%V 23
%U http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a5/
%G en
%F IIGUM_2018_23_a5
H. M. Zayed; M. K. Aouf; Maslina Darus. On certain subclasses of analytic functions with varying arguments of coefficients. The Bulletin of Irkutsk State University. Series Mathematics, Tome 23 (2018), pp. 80-95. http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a5/

[1] Aouf M. K., “On fractional derivatives and fractional integrals of certain subclasses of starlike and convex functions”, Math. Japon., 35:5 (1990), 831–837 | MR

[2] Duren P. L., Univalent Functions, Springer-Verlag, New York, 1983 | MR

[3] Owa S., “On the distortion theorems. I”, Kyungpook Math. J., 18:1 (1978), 53–59 | MR

[4] Silverman H., “Univalent functions with varying arguments”, Houston J. Math., 7:2 (1981), 283–287 | MR

[5] Srivastava H. M., Aouf M. K., “A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I; II”, J. Math. Anal. Appl., 171 (1992), 1–13 ; ibid., 192 (1995), 973–688 | DOI | MR | DOI

[6] Srivastava H. M., Aouf M. K., “Some applications of fractional calculus operators to certain subclasses of prestarlike functions with negative coefficients”, Computers Math. Appl., 30:1 (1995), 53–61 | DOI | MR

[7] Srivastava H. M., Owa S., “An application of the fractional derivative”, Math. Japon., 29 (1984), 383–389 | MR

[8] Srivastava H. M., Owa S. (eds.), Univalent Functions, Fractional Calculus and Their Applications, Halsted press (Ellis Horwood Limited Chichester). John Wiley and Sons, New York–Chichester–Brisbane–Toronto, 1989

[9] Srivastava H. M., Owa S. (eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore–New Jersey–London–Hong Kong, 1992 | DOI | MR

[10] Uralegaddi B. A., Ganigi M. D., Sarangi S. M., “Close to convex functions with positive coefficients”, Stud. Univ. Babes-Bolyai Math., 1995, 25–31 | MR