On certain subclasses of analytic functions with varying arguments of coefficients
The Bulletin of Irkutsk State University. Series Mathematics, Tome 23 (2018), pp. 80-95
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we introduce and study the class$ \mathcal{VR}_{\delta ,\eta
}(n,\lambda ,\alpha ) $of analytic functions with varying arguments of
coefficients. We obtain coefficients inequalities, distortion theorems
involving fractional calculus, radii of close to convexity, starlikeness and
convexity and square root transformation for functions in the class $\mathcal{VR}_{\delta ,\eta }(n,\lambda ,\alpha )$. Finally, integral
convolution for functions in this class are considered.
Keywords:
analytic functions, Hadamard product,
fractional calculus operators, varying arguments of coefficients, square
root transformation, integral convolution.
@article{IIGUM_2018_23_a5,
author = {H. M. Zayed and M. K. Aouf and Maslina Darus},
title = {On certain subclasses of analytic functions with varying arguments of coefficients},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {80--95},
publisher = {mathdoc},
volume = {23},
year = {2018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a5/}
}
TY - JOUR AU - H. M. Zayed AU - M. K. Aouf AU - Maslina Darus TI - On certain subclasses of analytic functions with varying arguments of coefficients JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2018 SP - 80 EP - 95 VL - 23 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a5/ LA - en ID - IIGUM_2018_23_a5 ER -
%0 Journal Article %A H. M. Zayed %A M. K. Aouf %A Maslina Darus %T On certain subclasses of analytic functions with varying arguments of coefficients %J The Bulletin of Irkutsk State University. Series Mathematics %D 2018 %P 80-95 %V 23 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a5/ %G en %F IIGUM_2018_23_a5
H. M. Zayed; M. K. Aouf; Maslina Darus. On certain subclasses of analytic functions with varying arguments of coefficients. The Bulletin of Irkutsk State University. Series Mathematics, Tome 23 (2018), pp. 80-95. http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a5/