@article{IIGUM_2018_23_a4,
author = {J. V. Tsyganova and A. V. Tsyganov},
title = {On the computation of derivatives within {LD} factorization of parametrized matrices},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {64--79},
year = {2018},
volume = {23},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a4/}
}
TY - JOUR AU - J. V. Tsyganova AU - A. V. Tsyganov TI - On the computation of derivatives within LD factorization of parametrized matrices JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2018 SP - 64 EP - 79 VL - 23 UR - http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a4/ LA - ru ID - IIGUM_2018_23_a4 ER -
%0 Journal Article %A J. V. Tsyganova %A A. V. Tsyganov %T On the computation of derivatives within LD factorization of parametrized matrices %J The Bulletin of Irkutsk State University. Series Mathematics %D 2018 %P 64-79 %V 23 %U http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a4/ %G ru %F IIGUM_2018_23_a4
J. V. Tsyganova; A. V. Tsyganov. On the computation of derivatives within LD factorization of parametrized matrices. The Bulletin of Irkutsk State University. Series Mathematics, Tome 23 (2018), pp. 64-79. http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a4/
[1] Semushin I. V., Tsyganova Yu. V., Kulikova M. V. et al., Adaptive Systems of Filtering, Control, and Fault Detection, Collective monograph, USU Publishers, Ulyanovsk, 2011, 298 pp. (in Russian)
[2] Tsyganova Yu. V., “Computing the gradient of the auxiliary quality functional in the parametric identification problem for stochastic systems”, Automation and Remote Control, 72:9 (2011), 1925–1940 | DOI | MR
[3] Tsyganova Yu. V., Kulikova M. V., “On efficient parametric identification methods for linear discrete stochastic systems”, Automation and Remote Control, 73:6 (2012), 962–975 | DOI | MR
[4] Shary S. P., Course of computational methods, Electronic textbook, Institute of Computational Technologies SB RAS, 2012, 315 pp. (in Russian)
[5] G. J. Bierman, Factorization Methods For Discrete Sequential Estimation, Academic Press, New York, 1977, 256 pp. | MR
[6] G. J. Bierman, M. R. Belzer, J. S. Vandergraft, D. W. Porter, “Maximum likelihood estimation using square root information filters”, IEEE Trans. on Automatic Control, 35:12, Dec. (1990), 1293–1298 | DOI | MR
[7] A. Björck, “Solving least squares problems by by Gram–Schmidt orthogonalization”, BIT, 7 (1967), 1–21 | DOI | MR
[8] L. Dieci, R. D. Russell, E. S. Van Vleck, “On the Computation of Lyapunov Exponents for Continuous Dynamical Systems”, SIAM J. Numer. Anal., 34:1 (1997), 402—423 | DOI | MR
[9] L. Dieci, T. Eirola, “Applications of Smooth Orthogonal Factorizations of Matrices”, Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, IMA Volumes in Mathematics and its Applications, 119, Springer, New York, 2000, 141–162 | DOI | MR
[10] M. Giles (Executor), An extended collection of matrix derivative results for forward and reverse mode algorithmic differentiation, Report 08/01, January, Oxford University Computing Laboratory, Parks Road, Oxford, U.K., 2008, 23 pp. | MR
[11] N. K. Gupta, R. K. Mehra, “Computational aspects of maximum likelihood estimation and reduction in sensitivity function calculations”, IEEE Trans. on Automatic Control, AC-19 (1974), 774–783 | DOI | MR
[12] T. L. Jordan, “Experiments on error growth associated with some linear least squares procedures”, Math. Comp., 22:1 (1968), 579–588 | DOI | MR
[13] J. M. Jover, T. Kailath, “A Parallel Architecture for Kalman Filter Measurement Update and Parameter Estimation”, Automatica, 22:1 (1986), 43–57 | DOI
[14] M. V. Kulikova, “Maximum likelihood estimation via the extended covariance and combined square-root filters”, Mathematics and Computers in Simulation, 79:5 (2009), 1641–1657 | DOI | MR
[15] M. V. Kulikova, “Likelihood gradient evaluation using square-root covariance filters”, IEEE Trans. on Automatic Control, 54, Mar. (2009), 3646–651 | DOI | MR
[16] M. V. Kulikova, J. V. Tsyganova, “Constructing numerically stable Kalman filter-based algorithms for gradient-based adaptive filtering”, Int. J. Adapt. Control Signal Process., 29:11, Nov. (2015), 1411–1426 | DOI | MR
[17] P. Kunkel, V. Mehrmann, “Smooth factorizations of matrix valued functions and their derivatives”, Numerische Mathematik, 60:1, Dec. (1991), 115–131 | DOI | MR
[18] C. L. Thornton, Triangular Covariance Factorizations for Kalman Filtering, Ph. D. thesis, School of Engineering, University of California at Los Angeles, 1976
[19] J. V. Tsyganova, M. V. Kulikova, “State sensitivity evaluation within UD based array covariance filters”, IEEE Trans. on Automatic Control, 58:11, Nov. (2013), 2944–2950 | DOI | MR
[20] Walter S. F., Structured Higher-Order Algorithmic Differentiation in the Forward and Reverse Mode with Application in Optimum Experimental Design, Ph.D. thesis, Humboldt-Universität zu Berlin, 2011, 221 pp.