Mots-clés : rest point, bifurcation.
@article{IIGUM_2018_23_a3,
author = {N. A. Sidorov and D. N. Sidorov and Yong Li},
title = {Areas of attraction of equilibrium points of nonlinear systems: stability, branching and blow-up of solutions},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {46--63},
year = {2018},
volume = {23},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a3/}
}
TY - JOUR AU - N. A. Sidorov AU - D. N. Sidorov AU - Yong Li TI - Areas of attraction of equilibrium points of nonlinear systems: stability, branching and blow-up of solutions JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2018 SP - 46 EP - 63 VL - 23 UR - http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a3/ LA - ru ID - IIGUM_2018_23_a3 ER -
%0 Journal Article %A N. A. Sidorov %A D. N. Sidorov %A Yong Li %T Areas of attraction of equilibrium points of nonlinear systems: stability, branching and blow-up of solutions %J The Bulletin of Irkutsk State University. Series Mathematics %D 2018 %P 46-63 %V 23 %U http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a3/ %G ru %F IIGUM_2018_23_a3
N. A. Sidorov; D. N. Sidorov; Yong Li. Areas of attraction of equilibrium points of nonlinear systems: stability, branching and blow-up of solutions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 23 (2018), pp. 46-63. http://geodesic.mathdoc.fr/item/IIGUM_2018_23_a3/
[1] Barbashin E. A., Introduction to stability theory, Libercom, M., 2014, 230 pp. (in Russian)
[2] Vainberg M. M., Trenogin V. A., A Theory of branching of solutions of non-linear equations, Leyden, 1974 | MR
[3] Voropai N. I., Kurbatsky V. G. et al., Complex of intelligent tools for preventing major accidents in electric power systems, Nauka, Novsibirsk, 2016, 332 pp. (in Russian)
[4] Daleckii Ju. L., Krein M. G., Stability of solutions of differential equations in Banach space, Ser. “Translations of Mathematical Monographs”, 43, AMS Publ., Rhode Island, 2002, 386 pp. | DOI | MR
[5] Demidovich B. P., Lectures on mathematical stability theory, Nauka Publ., M., 1967, 471 pp. (in Russian)
[6] Erugin N. P., The Book for Reading on General Course of Differential Equations, Nauka i Tekhnika Publ., Minsk, 1972, 668 pp. (in Russian)
[7] Matrosov V. M., “The comparison principle with a vector-valued Ljapunov function. III”, Differ. Uravn., 5:7 (1969), 1171–1185 | MR
[8] Matrosov V. M., “Differential equations and inequalities with discontinuous right member. I”, Differ. Uravn., 3:3 (1967), 395–409 | MR
[9] Sidorov N. A., Trenogin V. A., “Bifurcation points of nonlinear equation”, Nonlinear analysis and nonlinear differential equations, eds. V. A. Trenogin, A. F. Filippov, Fizmatlit Publ., M., 2013, 5–50 (in Russian) | MR
[10] Sidorov D. N., Methods of analysis of integral dynamical models. Theory and applications, ISU Publ., Irkutsk, 2013, 293 pp. (in Russian)
[11] Sidorov D. N., “Existence and blow-up of Kantorovich principal continuous solutions of nonlinear integral equations”, Differential Equations, 50:9 (2014), 1217–1224 | DOI | MR
[12] Sidorov N. A., General issues of regularization in branching problems, ISU Publ., Irkutsk, 1982, 312 pp. (in Russian)
[13] Trenogin V. A., Functional analysis, Fizmatlit Publ., M., 2002, 488 pp. (in Russian)
[14] Khalil H. K., Nonlinear systems, Prentice hall, 1991
[15] S. Ayasun, C. O. Nwankpa, H. G. Kwatny, “Computation of singular and singularity induced bifurcation points of differential-algebraic power system model”, IEEE Transactions on Circuits and Systems. I: Fundamental Theory and Applications, 51:8 (2004), 1525–1538 | DOI | MR
[16] B. Buffoni, J. Toland, Analytic Theory of Global Bifurcation: An Introduction, Princeton series in applied mathematics, Princeton University Press, 2003, 169 pp. | DOI | MR
[17] J. Machowski, J. W. Bialek, J. R. Bumby, Power system dynamics. Stability and control, John Wiley, Oxford, 2008, 658 pp.
[18] F. Milano, Power system modelling and scripting, Springer, Berlin, 2010, 578 pp. | DOI
[19] D. Sidorov, N. Sidorov, “Convex majorants method in the theory of nonlinear Volterra equations”, Banach J. of Mathematical Analysis, 6:1 (2012), 1–10 | DOI | MR
[20] J. Sjöberg, K. Fujimoto, T. Glad, “Model reduction of nonlinear differential-algebraic equations”, IFAC Proceedings Volumes, 40:12 (2007), 176–181 | DOI
[21] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov-Schmidt methods in nonlinear analysis and applications, Springer Series: Mathematics and Its Applications, 550, 2013, 568 pp. | DOI | MR
[22] Sidorov D., Integral Dynamical Models: Singularities, Signals and Control, World Scientific Series on Nonlinear Science, Series A, 87, ed. L. O. Chua, World Scientific Publ., Singapore–London, 2015, 258 pp. | DOI | MR
[23] D. N. Sidorov, N. A. Sidorov, “Solution of irregular systems of partial differential equations using skeleton decomposition of linear operators”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:2 (2017), 63–73 | DOI