Generations of generative classes
The Bulletin of Irkutsk State University. Series Mathematics, Tome 22 (2017), pp. 106-117 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study generating sets of diagrams for generative classes. The generative classes appeared solving a series of model-theoretic problems. They are divided into semantic and syntactic ones. The fists ones are witnessed by well-known Fraïssé constructions and Hrushovski constructions. Syntactic generative classes and syntactic generic constructions were introduced by the author. They allow to consider any $\omega$-homogeneous structure as a generic limit of diagrams over finite sets. Therefore any elementary theory is represented by some their generic models. Moreover, an information written by diagrams is realized in these models. We consider generic constructions both in general case and with some natural restrictions, in particular, with the self-sufficiency property. We study the dominating relation and domination-equivalence for generative classes. These relations allow to characterize the finiteness of generic structure reducing the construction of generic structures to maximal diagrams. We also have that a generic structure is finite if and only if given generative class is finitely generated, i.e., all diagrams of this class are reduced to copying of some finite set of diagrams. It is shown that a generative class without maximal diagrams is countably generated, i.e., reduced to some at most countable set of diagrams if and only if there is a countable generic structure. And the uncountable generation is equivalent to the absence of generic structures or to the existence only uncountable generative structures.
Keywords: generative class, generic structure, generation of generative class.
@article{IIGUM_2017_22_a7,
     author = {S. V. Sudoplatov},
     title = {Generations of generative classes},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {106--117},
     year = {2017},
     volume = {22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a7/}
}
TY  - JOUR
AU  - S. V. Sudoplatov
TI  - Generations of generative classes
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2017
SP  - 106
EP  - 117
VL  - 22
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a7/
LA  - en
ID  - IIGUM_2017_22_a7
ER  - 
%0 Journal Article
%A S. V. Sudoplatov
%T Generations of generative classes
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2017
%P 106-117
%V 22
%U http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a7/
%G en
%F IIGUM_2017_22_a7
S. V. Sudoplatov. Generations of generative classes. The Bulletin of Irkutsk State University. Series Mathematics, Tome 22 (2017), pp. 106-117. http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a7/

[1] Baldwin J. T., Shi N., “Stable generic structures”, Ann. Pure and Appl. Logic, 79:1 (1996), 1–35 | DOI | MR | Zbl

[2] Fraïssé R., “Sur certaines relations qui généralisent l'ordre des nombres rationnels”, C.R. Acad. Sci. Paris, 237 (1953), 540–542 | MR | Zbl

[3] Fraïssé R., “Sur l'extension aux relations de quelques propriétés des ordres”, Annales Scientifiques de l'École Normale Supérieure. Troisième Série, 71 (1954), 363–388 | MR | Zbl

[4] Hodges W., Model theory, Cambridge University Press, Cambridge, 1993 | DOI | MR | Zbl

[5] Hrushovski E., “Strongly minimal expansions of algebraically closed fields”, Israel J. Math., 79:2–3 (1992), 129–151 | DOI | MR | Zbl

[6] Hrushovski E., “Extending partial isomorphisms of graphs”, Combinatorica, 12:4 (1992), 204–218 | DOI | MR

[7] Hrushovski E., “A new strongly minimal set”, Ann. Pure and Appl. Logic, 62:2 (1993), 147–166 | DOI | MR | Zbl

[8] Kiouvrekis Y., Stefaneas P., Sudoplatov S. V., “Definable sets in generic structures and their cardinalities”, Siberian Advances in Mathematics, 2018 (to appear); Ya. Kiuvrekis, P. Stefaneas, S. V. Sudoplatov, “Opredelimye mnozhestva v genericheskikh strukturakh i ikh moschnosti”, Mat. tr., 20:2 (2017), 52–79

[9] Sudoplatov S. V., “Syntactic approach to constructions of generic models”, Algebra and Logic, 46:2 (2007), 134–146 | DOI | MR | Zbl

[10] Sudoplatov S. V., The Lachlan Problem, NSTU, Novosibirsk, 2009 (in Russian)

[11] Sudoplatov S. V., Classification of Countable Models of Complete Theories, NSTU, Novosibirsk, 2014 (in Russian)

[12] Sudoplatov S. V., “Generative and pre-generative classes”, Proceedings of the $10^{\rm th}$ Panhellenic Logic Symposium (June 11–15, 2015, Samos, Greece), University of Aegean, University of Crete, University of Athens, 2015, 30–34

[13] Sudoplatov S. V., “Generative classes generated by sets of diagrams”, Algebra and Model Theory 10, Collection of papers, eds. A.G. Pinus, K.N. Ponomaryov, S.V. Sudoplatov, E.I. Timoshenko, NSTU, Novosibirsk, 2015, 163–174

[14] Sudoplatov S. V., Kiouvrekis Y., Stefaneas P., “Generic constructions and generic limits”, Algebraic Modeling of Topological and Computational Structures and Applications, Springer Proc. in Math. Statist., 219, eds. S. Lambropoulou et al., Springer Int. Publ., Berlin, 2017