On a sufficient condition for the existence of a periodic part in the Shunkov group
The Bulletin of Irkutsk State University. Series Mathematics, Tome 22 (2017), pp. 90-105 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The group $ G $ is saturated with groups from the set of groups if any a finite subgroup $ K $ of $ G $ is contained in a subgroup of $ G $, which is isomorphic to some group in $ \mathfrak{X} $. The set $ \mathfrak{X} $ from the above definition is called the saturating set for the group. By the Shunkov group $ G $ we mean a group in which for any of its finite subgroup $ H $ in the factor group $ N_G (H) / H $ any two conjugate elements of prime order generate a finite subgroup. The Shunkov group does not have to be periodic. Therefore, the problem of the location of elements of finite order in the Shunkov group with the saturation condition must be solved separately. If in a group $ G $ all elements of finite orders are contained in a periodic subgroup of the group $ G $, then it is called the periodic part of the group $ G $. It was proved that a periodic Shunkov group, saturated with finite simple non-abelian groups of Lie type of rank 1, is isomorphic to a group of Lie type of rank $1$ over a suitable locally finite field. In this paper we consider arbitrary Shunkov groups (not necessarily periodic). It is proved that the Shunkov group $ G $, saturated with groups from the set of finite simple groups of Lie type of rank $ 1 $, has a periodic part that is isomorphic to a simple group of Lie type of rank $ 1 $ over a sutable locally finite field.
Keywords: groups saturated with the set of groups, Shunkov group.
@article{IIGUM_2017_22_a6,
     author = {A. A. Shlepkin},
     title = {On a sufficient condition for the existence of a periodic part in the {Shunkov} group},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {90--105},
     year = {2017},
     volume = {22},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a6/}
}
TY  - JOUR
AU  - A. A. Shlepkin
TI  - On a sufficient condition for the existence of a periodic part in the Shunkov group
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2017
SP  - 90
EP  - 105
VL  - 22
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a6/
LA  - ru
ID  - IIGUM_2017_22_a6
ER  - 
%0 Journal Article
%A A. A. Shlepkin
%T On a sufficient condition for the existence of a periodic part in the Shunkov group
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2017
%P 90-105
%V 22
%U http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a6/
%G ru
%F IIGUM_2017_22_a6
A. A. Shlepkin. On a sufficient condition for the existence of a periodic part in the Shunkov group. The Bulletin of Irkutsk State University. Series Mathematics, Tome 22 (2017), pp. 90-105. http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a6/

[1] Dicman A. P., “On $p$-group center”, Trudy seminara po teorii grupp, M., 1938, 30–34 (In Russian)

[2] Kargapolov M. I., Merzljakov Ju. I., Fundamentals of group theory, Nauka Publ., M., 1982 (In Russian)

[3] Kuznecov A. A., Lytkina D. V., Tuhvatulina L. R., Filippov K. A., Groups with saturation conditions, Krasnojar. gos. agrar. un-t Publ., Krasnoyarsk, 2010 (In Russian)

[4] Kuznecov A. A., Filippov K. A., “Groups, saturated with given set of groups”, Sib. jelektron. mat. izv., 8 (2011), 230–246 (In Russian) | Zbl

[5] Li B. Dzh., Lytkina D. V., “On sylow 2-subgroups of periodic groups, saturated with finite simple groups”, Sib. matem. zhurn., 57:6 (2016), 1313–1319 (In Russian) | Zbl

[6] Lytkina D. V., “On groups saturated by finite simple groups”, Algebra and Logic, 48:5 (2009), 357–370 | DOI | MR | Zbl

[7] Lytkina D. V., “The structure of a group of orders of elements of which does not exceed 4”, Matem. sist., 4, 2005, 54–59 (In Russian) | Zbl

[8] Lytkina D. V., “Periodic groups, saturated with direct products of finite simple groups II”, Siberian Mathematical Journal, 52 (2011), 1096–1112 (In Russian) | DOI | Zbl

[9] Mazurov V. D., “Finite groups”, Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 14, VINITI, M., 1976, 5–56 (In Russian) | Zbl

[10] Ostylovskij A. N., Shunkov V. P., “On the local finiteness of a class of groups with the minimality condition”, Issledovanija po teorii grupp, 1975, 32–48 (In Russian)

[11] Sanov I. N., “Solution of the Burnside problem for period 4”, Uchen. zapiski LGU. Ser. Matem., 1940, no. 55, 166–170 (In Russian)

[12] Filippov K. A., “On the periodic part of the Shunkov group saturated with $L_2(p^n)$”, Vestnik SibGAU, 2012, no. 1, 611–617 (In Russian) | Zbl

[13] Filippov K. A., “On periodic groups saturated by finite simple groups”, Siberian Math. J., 53:2 (2012), 345–351 | DOI | MR | Zbl

[14] Shlepkin A. A., “On periodic groups and Shunkov groups saturated with unitary groups of degree 3”, Trudy instituta matematiki i mehaniki UrO RAN, 22, no. 3, 2016, 299–307 (In Russian)

[15] Shlepkin A. A., “On the periodic Shunkov group saturated by finite simple groups of Lie type 1”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 16 (2016), 102–116 (In Russian) | Zbl

[16] Shlepkin A. A., “Shunkov groups, saturated with woven groups”, Sib. jelektron. matemat. izv., 10 (2013), 56–64 (In Russian) | Zbl

[17] Shlepkin A. K., “Conjugately biprimitively finite groups containing finite unsolvable subgroups”, Tret'ja mezhdunar. konf. po algebre, Sb. tez. (Krasnojarsk, 1993) (In Russian)

[18] Shlepkin A. K., “On conjugate biprimitively finite groups with a primary minimum condition”, Algebra and Logic, 22 (1983), 226–231 (In Russian) | Zbl

[19] Shlepkin A. K., Shunkov groups with additional restrictions, Krasnoyarsk. state. Univer. Publ., 1999 (In Russian)

[20] Shunkov V. P., “On a class of $ p $-groups”, Algebra and Logic, 1970, no. 4, 484–496 (In Russian)

[21] Alperin J. L., Brauer R., Gorenstein D., “Finite simple groups of 2-rang two”, Scripta Math., 29:3–4, Collection of articles dedicated to the memori of Abraham Adrian Albert (1973), 191–214 | MR | Zbl

[22] N. Blakbern, “Same remarks on Chernikov's groups”, J. Math., 1962, no. 6, 525–554 | MR

[23] John N. Bray, Derek F. Holt, Colva M. Ronty-Dougal, The Maximal Subgroups of the Low-Dimensional Finite Classical groups, Cambridge university press, 2013, 319–325 | MR

[24] R. W. Carter, Simple groups of Lie type, Wiley and Sons, New York, 1972 | MR | Zbl