@article{IIGUM_2017_22_a2,
author = {E. E. Vityaev and V. V. Martinovich},
title = {Explicative deep learning with probabilistic formal concepts in a natural language processing task},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {31--49},
year = {2017},
volume = {22},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a2/}
}
TY - JOUR AU - E. E. Vityaev AU - V. V. Martinovich TI - Explicative deep learning with probabilistic formal concepts in a natural language processing task JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2017 SP - 31 EP - 49 VL - 22 UR - http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a2/ LA - ru ID - IIGUM_2017_22_a2 ER -
%0 Journal Article %A E. E. Vityaev %A V. V. Martinovich %T Explicative deep learning with probabilistic formal concepts in a natural language processing task %J The Bulletin of Irkutsk State University. Series Mathematics %D 2017 %P 31-49 %V 22 %U http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a2/ %G ru %F IIGUM_2017_22_a2
E. E. Vityaev; V. V. Martinovich. Explicative deep learning with probabilistic formal concepts in a natural language processing task. The Bulletin of Irkutsk State University. Series Mathematics, Tome 22 (2017), pp. 31-49. http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a2/
[1] Vityaev E. E., Knowledge discovery. Computational cognition. Cognitive process models, Novosibirsk State University Press, Novosibirsk, 2006, 293 pp. (in Russian)
[2] Vorontsov K. V., “Combinatorial approach to learning algorithms estimation”, Matematicheskie voprosi kibernetiki, 13, ed. Lupanov O. B., FizMatLit, M., 2004, 5–36 (in Russian) | MR
[3] A. Bordes, J. Weston, R. Collobert, Y. Bengio, “Learning structured embeddings of knowledge bases”, Proceedings of the 25th Conference on Artificial Intelligence, AAAI-11 (USA, San Francisco, 2011)
[4] A. Bordes, X. Glorot, J. Weston, Y. Bengio, “Joint learning of words and meaning representations for open-text semantic parsing”, Proc. of the 15th Intern. Conf. on Artif. Intel. and Stat., JMLR, 22, 2012, 127–135
[5] A. Bordes et al., “A Semantic Matching Energy Function for Learning with Multi-relational Data”, Machine Learning, 2013, Special Issue on Learning Semantics
[6] Y. Bengio, R. Ducharme, P. Vincent, C. Jauvin, “A Neural Probabilistic Language Model”, Machine Learning Research, 2003, 1137–1155 | Zbl
[7] B. Ganter, Formal Concept Analysis: Methods, and Applications in Computer Science, Springer, TU Dresden, 2003 | MR
[8] B. Ganter, S. Obiedkov, Implications in Triadic Formal Contexts, Springer, TU Dresden, 2004 | MR | Zbl
[9] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016 | MR | Zbl
[10] Y. LeCun et al., “A Tutorial on Energy-Based Learning”, Predicting Structured Outputs, eds. Bakir et al., MIT Press, 2006
[11] J. M. Lobo, A. Jimenez-Valverde, R. Real, “AUC: a misleading measure of the performance of predictive distribution models”, Global Ecology and Biogeography, 17 (2008), 145–151 | DOI
[12] A. T. McCray, “An upper level ontology for the biomedical domain”, Comparative and Functional Genomics, 4 (2003), 80–88 | DOI
[13] E. E. Vityaev, V. V. Martynovich, “Probabilistic Formal Concepts with Negation”, Perspectives of System Informatics, LNCS, 8974, eds. A. Voronkov, I. Virbitskaite, 2015, 385–399 | MR | Zbl