@article{IIGUM_2017_22_a1,
author = {A. S. Baliuk and A. S. Zinchenko},
title = {Lower bound of the complexity of seven-valued functions in the class of polarized polynomials},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {18--30},
year = {2017},
volume = {22},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a1/}
}
TY - JOUR AU - A. S. Baliuk AU - A. S. Zinchenko TI - Lower bound of the complexity of seven-valued functions in the class of polarized polynomials JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2017 SP - 18 EP - 30 VL - 22 UR - http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a1/ LA - ru ID - IIGUM_2017_22_a1 ER -
%0 Journal Article %A A. S. Baliuk %A A. S. Zinchenko %T Lower bound of the complexity of seven-valued functions in the class of polarized polynomials %J The Bulletin of Irkutsk State University. Series Mathematics %D 2017 %P 18-30 %V 22 %U http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a1/ %G ru %F IIGUM_2017_22_a1
A. S. Baliuk; A. S. Zinchenko. Lower bound of the complexity of seven-valued functions in the class of polarized polynomials. The Bulletin of Irkutsk State University. Series Mathematics, Tome 22 (2017), pp. 18-30. http://geodesic.mathdoc.fr/item/IIGUM_2017_22_a1/
[1] Alekseev V. B., Voronenko A. A., Selezneva S. N., “On the complexity of representations of $k$-valued functions by polarized polynomials”, Proc. of the Int. Workshop on Discrete Mathematics and Mathematical Cybernetics (Ratmino, 2003), 8–9 (in Russian)
[2] Baliuk A. S., Zinchenko A. S., “Lower bound of the complexity of functions over finite field of order 4 in the class of polarized polynomials”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 16 (2016), 19–29 (in Russian)
[3] Baliuk A. S., Zinchenko A. S., “Lower bound of the complexity of five-valued functions in the class of polarized polynomials”, Diskr. Mat., 28:4 (2016), 29–37 (in Russian) | DOI
[4] Baliuk A. S., Yanushkovsky G. V., “Upper bounds of the complexity of functions over finite fields in some classes of Kroneker forms”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 14 (2015), 3–17 (in Russian)
[5] Graham R., Knuth D., Patashnik O., Concrete Mathematics. A Foundation for Computer Science, Addison Wesley, 1994, 672 pp. | MR | Zbl
[6] Kazimirov A. S., Reymerov S. Yu., “On upper bounds of the complexity of functions over nonprime finite fields in some classes of polarized polynomials”, Izv. Irkutsk. Gos. Univ., Ser. Mat., 17 (2016), 37–45 (in Russian) | Zbl
[7] Markelov N. K., “A lower estimate of the complexity of three-valued logic functions in the class of polarized polynomials”, Vestn. Mosk. Univ., Ser. 15: Vychisl. Matem. Kibern., 36:3 (2012), 150–154 | MR | Zbl
[8] Peryazev N. A., “Complexity of Boolean functions in the class of polarized polynomial forms”, Algebra and Logic, 34:3 (1995), 177–179 | DOI | MR | Zbl
[9] Selezneva S. N., “On the complexity of the representation of functions of many-valued logics by polarized polynomials”, Discrete Math. Appl., 12:3 (2002), 229–234 | DOI | DOI | MR | Zbl