@article{IIGUM_2017_21_a7,
author = {D. A. Tursunov and K. G. Kozhobekov},
title = {The asymptotics of solutions of a singularly perturbed equation with a of fractional turning point},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {108--121},
year = {2017},
volume = {21},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_21_a7/}
}
TY - JOUR AU - D. A. Tursunov AU - K. G. Kozhobekov TI - The asymptotics of solutions of a singularly perturbed equation with a of fractional turning point JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2017 SP - 108 EP - 121 VL - 21 UR - http://geodesic.mathdoc.fr/item/IIGUM_2017_21_a7/ LA - ru ID - IIGUM_2017_21_a7 ER -
%0 Journal Article %A D. A. Tursunov %A K. G. Kozhobekov %T The asymptotics of solutions of a singularly perturbed equation with a of fractional turning point %J The Bulletin of Irkutsk State University. Series Mathematics %D 2017 %P 108-121 %V 21 %U http://geodesic.mathdoc.fr/item/IIGUM_2017_21_a7/ %G ru %F IIGUM_2017_21_a7
D. A. Tursunov; K. G. Kozhobekov. The asymptotics of solutions of a singularly perturbed equation with a of fractional turning point. The Bulletin of Irkutsk State University. Series Mathematics, Tome 21 (2017), pp. 108-121. http://geodesic.mathdoc.fr/item/IIGUM_2017_21_a7/
[1] Alymkulov K., Tursunov D. A., “On a method of construction of asymptotic decompositions of bisingular perturbed problems”, Russian Mathematics, 60:12 (2016), 1–8 | DOI | MR | Zbl
[2] Bobochko V. N., “An Unstable Differential Turning Point in the Theory of Singular Perturbations”, Russian Mathematics, 49:4 (2005), 6–14 | MR | Zbl
[3] Bobochko V. N., “Uniform Asymptotics of a Solution of an Inhomogeneous System of Two Differential Equations with a Turning Point”, Russian Mathematics, 50:5 (2006), 6–16 | MR | Zbl
[4] Zimin A. B., “The Cauchy problem for a second order linear equation with small parameter which degenerates in the limit to an equation with singular points”, Differential Equations, 5:9 (1969), 1583–1593 (in Russian) | MR | Zbl
[5] Ilin A. M., Matching of asymptotic expansions of solutions of boundary value problems, AMS, Providence, Rhode Island, 1992, 296 pp. | MR | MR | Zbl
[6] Ilin A. M., Danilin A. R., Asymptotic Methods in Analysis, Fizmatlit, M., 2009, 248 pp. (in Russian)
[7] Lomov S. A., Introduction to the General Theory of Singular Perturbations, AMS, Providence, Rhode Island, 1992 | MR | MR | Zbl
[8] Tursunov D. A., “Asymptotic expansion for a solution of an ordinary second-order differential equation with three turning points”, Tr. IMM UrO RAN, 22, no. 1, 2016, 271–281 (in Russian)
[9] Tursunov D. A., “The asymptotic solution of the bisingular Robin problem”, Sib. Electron. Mat. Reports, 14 (2017), 10–21 (in Russian) | DOI | MR | Zbl
[10] Fedoryuk M. V., Asymptotic analysis: linear ordinary differential equations, Springer-Verlag, Berlin, 1993, 363 pp. | DOI | MR | MR | Zbl
[11] J. D. Cole, Perturbation Methods in Appled Mathematics, Blaisdell, Waltham, MA, 1968 | MR
[12] V. Ekhaus, Matched Asymptotic Expansions and Singular Perturbation, North-Holland, Amsterdam, 1973 | MR
[13] A. Fruchard, R. Schafke, Composite Asymptotic Expansions, Springer-Verlag, Berlin–Heidelberg, 2013 | DOI | MR | Zbl
[14] W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, Dover publications, INC, Mineola, N.Y., 1965 | MR
[15] W. Wasow, Linear turning point theory, Springer-Verlag, N. Y., 1985 | DOI | MR | Zbl
[16] A. M. Watts, “A singular perturbation problem with a turning point”, Bull. Austral. Math. Soc., 5 (1971), 61–73 | DOI | MR | Zbl