The polarization theorem and polynomial identities for matrix functions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 21 (2017), pp. 77-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article the simple combinatorial proof of the known polarization theorem (about the restoration of a polyadditive symmetric function over its values on a diagonal) is given. Known and new applications of this theorem for the reception of polynomial identities (the calculation) of several matrix functions is given, including a case of noncommutative variables and (first) the determinant of a space matrix are resulted.
Keywords: polarization theorem, determinants, permanents, polynomial identities
Mots-clés : noncommutative variables.
@article{IIGUM_2017_21_a5,
     author = {G. P. Egorychev},
     title = {The polarization theorem and polynomial identities for matrix functions},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {77--88},
     year = {2017},
     volume = {21},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_21_a5/}
}
TY  - JOUR
AU  - G. P. Egorychev
TI  - The polarization theorem and polynomial identities for matrix functions
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2017
SP  - 77
EP  - 88
VL  - 21
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2017_21_a5/
LA  - ru
ID  - IIGUM_2017_21_a5
ER  - 
%0 Journal Article
%A G. P. Egorychev
%T The polarization theorem and polynomial identities for matrix functions
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2017
%P 77-88
%V 21
%U http://geodesic.mathdoc.fr/item/IIGUM_2017_21_a5/
%G ru
%F IIGUM_2017_21_a5
G. P. Egorychev. The polarization theorem and polynomial identities for matrix functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 21 (2017), pp. 77-88. http://geodesic.mathdoc.fr/item/IIGUM_2017_21_a5/

[1] Egorychev G. P., “New formulas for the permanent”, Soviet Math. Dokl., 265:4 (1980), 784–787 (in Russian)

[2] Egorychev G. P., “A polynomial identity for the permanent”, Math. Zametki, 26:6 (1979), 961–964 (in Russian) | Zbl

[3] Egorychev G. P., “New polynomial identities for determinants over commutative rings”, Izv. Irkutsk. Gos. Univ. Ser. Mat., 5:4 (2012), 16–20 (in Russian) | Zbl

[4] Egorychev G. P., Egorycheva Z. V., New polynomial identity for computing permanents, Dep. in VINITI 13.06.2007, No 627-B2007, Sibirian Federal University, 32 pp.

[5] Egorychev G. P., “A new family of polynomial identities for computing determinats”, Dokl. Acad. Nauk, 452:1 (2013), 14–16 (in Russian) | DOI | Zbl

[6] Egorychev G. P., Discrete mathematics. Permanents, Siberian Federal University Publ., Krasnoyarsk, 2007, 272 pp.

[7] Pozhidaev A. P., “A simple factor-algebras and subalgebras of Jacobians algebras”, Sibirsk. Mat. Zh., 39:3 (1998), 593–599 (in Russian)

[8] Sokolov N. P., Space matrices and its applications, PhyzMathLit Publ., M., 1960, 300 pp.

[9] Filippov V. T., “On the $n$-Lie algebras of Jacobians”, Sibirsk. Mat. Zh., 39:3 (1998), 660–669 (in Russian) | Zbl

[10] A. Barvinok, New permanent estimators via non-commutative determinants, 2000, 13 pp., arXiv: math/0007153

[11] H. Cartan, Elementary theory of analytic functions of one or several complex variables, Dover Publ., N.Y., 1995, 300 pp. | MR