The polarization theorem and polynomial identities for matrix functions
The Bulletin of Irkutsk State University. Series Mathematics, Tome 21 (2017), pp. 77-88

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article the simple combinatorial proof of the known polarization theorem (about the restoration of a polyadditive symmetric function over its values on a diagonal) is given. Known and new applications of this theorem for the reception of polynomial identities (the calculation) of several matrix functions is given, including a case of noncommutative variables and (first) the determinant of a space matrix are resulted.
Keywords: polarization theorem, determinants, permanents, polynomial identities
Mots-clés : noncommutative variables.
@article{IIGUM_2017_21_a5,
     author = {G. P. Egorychev},
     title = {The polarization theorem and polynomial identities for matrix functions},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {77--88},
     publisher = {mathdoc},
     volume = {21},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_21_a5/}
}
TY  - JOUR
AU  - G. P. Egorychev
TI  - The polarization theorem and polynomial identities for matrix functions
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2017
SP  - 77
EP  - 88
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2017_21_a5/
LA  - ru
ID  - IIGUM_2017_21_a5
ER  - 
%0 Journal Article
%A G. P. Egorychev
%T The polarization theorem and polynomial identities for matrix functions
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2017
%P 77-88
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2017_21_a5/
%G ru
%F IIGUM_2017_21_a5
G. P. Egorychev. The polarization theorem and polynomial identities for matrix functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 21 (2017), pp. 77-88. http://geodesic.mathdoc.fr/item/IIGUM_2017_21_a5/