A computational method for solving $N$-person game
The Bulletin of Irkutsk State University. Series Mathematics, Tome 20 (2017), pp. 109-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The nonzero sum $n$-person game has been considered. It is well known that the game can be reduced to a global optimization problem [5; 7; 14]. By extending Mills' result [5], we derive global optimality conditions for a Nash equilibrium. In order to solve the problem numerically, we apply the Curvilinear Multistart Algorithm [2; 3] developed for finding global solutions in nonconvex optimization problems. The proposed algorithm was tested on three and four person games. Also, for the test purpose, we have considered competitions of 3 companies at the bread market of Ulaanbaatar as the three person game and solved numerically.
Keywords: Nash equilibrium, mixed strategies, curvilinear multistart algorithm.
Mots-clés : nonzero sum game
@article{IIGUM_2017_20_a7,
     author = {R. Enkhbat and S. Batbileg and N. Tungalag and Anton Anikin and Alexander Gornov},
     title = {A computational method for solving $N$-person game},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {109--121},
     year = {2017},
     volume = {20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a7/}
}
TY  - JOUR
AU  - R. Enkhbat
AU  - S. Batbileg
AU  - N. Tungalag
AU  - Anton Anikin
AU  - Alexander Gornov
TI  - A computational method for solving $N$-person game
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2017
SP  - 109
EP  - 121
VL  - 20
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a7/
LA  - en
ID  - IIGUM_2017_20_a7
ER  - 
%0 Journal Article
%A R. Enkhbat
%A S. Batbileg
%A N. Tungalag
%A Anton Anikin
%A Alexander Gornov
%T A computational method for solving $N$-person game
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2017
%P 109-121
%V 20
%U http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a7/
%G en
%F IIGUM_2017_20_a7
R. Enkhbat; S. Batbileg; N. Tungalag; Anton Anikin; Alexander Gornov. A computational method for solving $N$-person game. The Bulletin of Irkutsk State University. Series Mathematics, Tome 20 (2017), pp. 109-121. http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a7/

[1] Strekalovsky A.S., “Global Optimality Conditions for Nonconvex Optimization”, Journal of Global Optimization, 12 (1998), 415-434 | DOI | MR | Zbl

[2] Enkhbat R., Tungalag N., Gornov A., Anikin A., “The Curvilinear Search Algorithm for Solving Three-Person Game”, Proc. DOOR 2016, CEUR-WS, 1623, 2016, 574-583 http://ceur-ws.org/Vol-1623/paperme4.pdf

[3] Gornov A., Zarodnyuk T., “Computing technology for estimation of convexity degree of the multiextremal function”, Machine learning and data analysis, 10:1 (2014), 1345-1353 http://jmlda.org

[4] Mangasarian O.L., Stone H., “Two-Person Nonzero Games and Quadratic Programming”, J. Mathemat. Anal. Appl., 9 (1964), 348-355 | DOI | MR | Zbl

[5] Mills H., “Equilibrium Points in Finite Games”, J. Soc. Indust. Appl. Mathemat., 8:2 (1960), 397-402 | DOI | MR | Zbl

[6] Von Neumann J., Morgenstern O., Theory of games and economic behavior, Princeton University Press, 1944 | MR | Zbl

[7] Dresher M., The Mathematics of Games of Strategy, Dover Publications, 1981 | MR | Zbl

[8] Vorobyev N.N., Noncooperative games, Nauka Publ., M., 1984 | MR

[9] Germeyer Yu.B., Introduction to Operation Reseach, Nauka Publ., M., 1976

[10] Strekalovsky A.S., Orlov A.V., Bimatrix Game and Bilinear Programming, Nauka Publ., M., 2007

[11] Owen G., Game Theory, Saunders, Philadelphia, 1971 | MR

[12] Gibbons R., Game Theory for Applied Economists, Princeton University Press, 1992

[13] Horst R., Tuy H., Global Optimization, Springer-Verlag, 1993 | MR | Zbl

[14] Howson J.T., “Equilibria of Polymatrix Games”, Management Sci., 18 (1972), 312-318 | DOI | MR | Zbl

[15] Strekalovsky A.S., Enkhbat R., “Polymatrix games and optimization problems”, Automation and Remote Control, 75:4 (2014), 632-645 | DOI | MR

[16] Orlov A.V., Strekalovsky A.S., Batbileg S., “On computational search for Nash equilibrium in hexamatrix games”, Optimization Letters, 10:2 (2014), 369-381 | DOI | MR

[17] Problem 3.4., https://www.dropbox.com/s/137aaahvbniau9q/problem_4_data.txt