A computational method for solving $N$-person game
    
    
  
  
  
      
      
      
        
The Bulletin of Irkutsk State University. Series Mathematics, Tome 20 (2017), pp. 109-121
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The nonzero sum $n$-person game has been considered. It is well known that the game can be reduced to a global optimization problem [5; 7; 14]. By extending Mills' result [5], we derive global optimality conditions for a Nash equilibrium. In order to solve the problem numerically, we apply the Curvilinear Multistart Algorithm [2; 3] developed for finding global solutions in nonconvex optimization problems. The proposed algorithm was tested on three and four person games. Also, for the test purpose, we have considered competitions of 3 companies at the bread market of Ulaanbaatar as the three person game and solved numerically.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Nash equilibrium, mixed strategies, curvilinear multistart algorithm.
Mots-clés : nonzero sum game
                    
                  
                
                
                Mots-clés : nonzero sum game
@article{IIGUM_2017_20_a7,
     author = {R. Enkhbat and S. Batbileg and N. Tungalag and Anton Anikin and Alexander Gornov},
     title = {A computational method for solving $N$-person game},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {109--121},
     publisher = {mathdoc},
     volume = {20},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a7/}
}
                      
                      
                    TY - JOUR AU - R. Enkhbat AU - S. Batbileg AU - N. Tungalag AU - Anton Anikin AU - Alexander Gornov TI - A computational method for solving $N$-person game JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2017 SP - 109 EP - 121 VL - 20 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a7/ LA - en ID - IIGUM_2017_20_a7 ER -
%0 Journal Article %A R. Enkhbat %A S. Batbileg %A N. Tungalag %A Anton Anikin %A Alexander Gornov %T A computational method for solving $N$-person game %J The Bulletin of Irkutsk State University. Series Mathematics %D 2017 %P 109-121 %V 20 %I mathdoc %U http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a7/ %G en %F IIGUM_2017_20_a7
R. Enkhbat; S. Batbileg; N. Tungalag; Anton Anikin; Alexander Gornov. A computational method for solving $N$-person game. The Bulletin of Irkutsk State University. Series Mathematics, Tome 20 (2017), pp. 109-121. http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a7/
