@article{IIGUM_2017_20_a4,
author = {P. S. Petrenko},
title = {Observability of linear differential-algebraic equations in the class of {Chebyshev} functions},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {61--74},
year = {2017},
volume = {20},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a4/}
}
TY - JOUR AU - P. S. Petrenko TI - Observability of linear differential-algebraic equations in the class of Chebyshev functions JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2017 SP - 61 EP - 74 VL - 20 UR - http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a4/ LA - ru ID - IIGUM_2017_20_a4 ER -
P. S. Petrenko. Observability of linear differential-algebraic equations in the class of Chebyshev functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 20 (2017), pp. 61-74. http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a4/
[1] Bernshteyn S.N., Extremal properties of polynomials and the best approximation of continuous functions of a single real variable, v. 1, ONTI, M.–L., 1937, 204 pp.
[2] Boyarintsev Ju.E., Regular and Singular Systems of Linear Ordinary Differential Equations, Nauka Publ., Siberian Branch, Novosibirsk, 1980, 222 pp.
[3] Bulatov M.V., Chistyakov V.F., “A numerical method for solving differential-algebraic equations”, Comput. Math. Math. Phys., 42:4 (2002), 439-449 | MR | Zbl
[4] Gaishun I.V., Introduction to the theory of linear nonstationary systems, Nats. AN Belarusi, In-t Matematiki, Minsk, 1999, 409 pp.
[5] Gantmacher F.R., The theory of matrices, Nauka Publ., M., 1988, 548 pp.
[6] Karlin S., Stadden V., Chebyshev systems and their applications in analysis and statistics, Nauka Publ., M., 1976, 568 pp.
[7] Krasovskii N.N., Motion Control Theory, Nauka Publ., M., 196, 476 pp.
[8] Chistyakov V.F., On the extension of linear systems not solved with respect to derivatives, Preprint No 5, IVC AN SSSR, Irkutsk, 1986
[9] Shcheglova A.A., “The solvability of the initial problem for a degenerate linear hybrid system with variable coefficients”, Russian Mathematics, 54:9 (2010), 49-61 | DOI | MR | Zbl
[10] Shcheglova A.A., Petrenko P.S., “The R-observability and R-controllability of linear differential-algebraic systems”, Russian Mathematics, 56:3 (2012), 66-82 | DOI | MR | Zbl
[11] K. E. Brenan, S. L. Campbell, L. R. Petzold, Numerical solution of initial-value problems in differential-algebraic equations, SIAM, 1996 | MR | Zbl
[12] S. L. Campbell, “Non-BDF methods for the solution of linear time varying implicit differential equations”, Proc. Amer. Contr. Conf. (San Diego, Calif. 5-6 June, 1984), v. 3, 1315-1318
[13] S. L. Campbell, E. Griepentrog, “Solvability of general differential algebraic equations”, SIAM J. Sci. Stat. Comp., 1995, no. 16, 257–270 | DOI | MR | Zbl
[14] S. L. Campbell, N. K. Nichols, W. J. Terrell, “Duality, observability, and controllability for linear time-varying descriptor systems”, Circ, Syst. and Sign. Process., 10 (1991), 455–470 | DOI | MR | Zbl
[15] L. Dai, Singular control system, Lecture notes in control and information sciences, 118, Springer-Verlag, 1989 | DOI | MR
[16] A. Ilchmann, V. Mehrmann, “A behavioural approach to linear time-varying systems. II. Descriptor systems”, SIAM Journal on Control and Optimization, 44 (2005), 1748–1765 | DOI | MR
[17] V. Mehrmann, T. Stykel, “Descriptor systems: a general mathematical framework for modelling, simulation and control”, Automatisierungstechnik, 8 (2006), 405–415
[18] P. S. Petrenko, “Local R-observability of differential-algebraic equations”, Journal of Siberian Federal University. Mathematics Physics, 9:3 (2016), 353–363 | DOI
[19] E. L. Yip, R. F. Sincovec, “Solvability, controllability and observability of continuous descriptor systemsm”, IEEE Trans. Autom. Control., AC-26 (1981), 702–707 | DOI | MR | Zbl