@article{IIGUM_2017_20_a0,
author = {M. N. Botoroeva and M. V. Bulatov},
title = {Applications and methods for the numerical solution of a class of integer-algebraic equations with variable limits of integration},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--16},
year = {2017},
volume = {20},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a0/}
}
TY - JOUR AU - M. N. Botoroeva AU - M. V. Bulatov TI - Applications and methods for the numerical solution of a class of integer-algebraic equations with variable limits of integration JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2017 SP - 3 EP - 16 VL - 20 UR - http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a0/ LA - ru ID - IIGUM_2017_20_a0 ER -
%0 Journal Article %A M. N. Botoroeva %A M. V. Bulatov %T Applications and methods for the numerical solution of a class of integer-algebraic equations with variable limits of integration %J The Bulletin of Irkutsk State University. Series Mathematics %D 2017 %P 3-16 %V 20 %U http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a0/ %G ru %F IIGUM_2017_20_a0
M. N. Botoroeva; M. V. Bulatov. Applications and methods for the numerical solution of a class of integer-algebraic equations with variable limits of integration. The Bulletin of Irkutsk State University. Series Mathematics, Tome 20 (2017), pp. 3-16. http://geodesic.mathdoc.fr/item/IIGUM_2017_20_a0/
[1] Aparcin A.S., Nonclassical Volterra Equations of the First Kind: Theory and Numerical Methods, Nauka, Sibirskaja izdatel'skaja firma RAS, Novosibirsk, 1999, 193 pp.
[2] Aparcin A.S., Trishechkin A.M., “Application of V.M. Glushkov Models for Modeling Long-term Strategies for the Development of a Unified Power System”, Abstracts of the Reports of the All-Union Conference «Course-4» (Riga, 1986), 17-19
[3] Budnikova O.S., Bulatov M. V., “Numerical Solution of Integral-algebraic Equations for Multistep Methods”, Comput. Math. and Math. Phys., 52:5 (2012), 691-701 | DOI | MR | Zbl
[4] Bulatov M.V., Methods for Solving Differential-algebraic and Degenerate Integral Systems, Doctor's Dissertation in Mathematics and Physics, Irkutsk, 2002, 244 pp.
[5] Bulatov M.V., “Regularization of Degenerate Systems of Volterra Integral Equations”, Comput. Math. Math. Phys., 42:3 (2002), 315-320 | MR | Zbl
[6] Bulatov M.V., Machkhina M.N., “On a Class of Integro-algebraic Equations with Variable Limits of Integration”, Journal of the Middle Volga Mathematical Society, 12:2 (2010), 40–45
[7] Vaarman O., Generalized Inverse Mappings, Valgus, Tallin, 1988, 120 pp.
[8] Glushkov V.M., “About One Class of Dynamic Macroeconomic Models”, Control Systems and Machines, 1977, no. 2, 3–6
[9] Glushkov V.M., Ivanov V.V., Janenko V.M., Modeling of Developing Systems, Nauka Publ., M., 1983, 350 pp.
[10] Anciferov E.G., Aparcin A.S., Ashhepkov L.T., Bulatov V.P., Mathematical Problems of Energy (Models, Methods, Solutions), Scientific Report, SEI SB AS USSR, Irkutsk, 1987, 286 pp.
[11] Ten Men Jan, Approximate Solution of Linear Volterra Integral Equations of the First Kind, Candidate's Dissertation in Mathematics and Physics, Irkutsk, 1985, 155 pp.
[12] Chistjakov V.F., “On Singular Systems of Ordinary Differential Equations and Their Integral Counterparts”, Lyapunov Functions and Their Applications, Nauka Publ., Novosibirsk, 1987, 231-239
[13] H. Brunner, Collocation Methods for Volterra Integral and Related Funktional Differential Equations, Cambridge University Press, Cambridge, 2004 | MR