@article{IIGUM_2017_19_a8,
author = {V. A. Dykhta},
title = {Feedback minimum principle for quasi-optimal processes of terminally-constrained control problems},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {113--128},
year = {2017},
volume = {19},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a8/}
}
TY - JOUR AU - V. A. Dykhta TI - Feedback minimum principle for quasi-optimal processes of terminally-constrained control problems JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2017 SP - 113 EP - 128 VL - 19 UR - http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a8/ LA - ru ID - IIGUM_2017_19_a8 ER -
%0 Journal Article %A V. A. Dykhta %T Feedback minimum principle for quasi-optimal processes of terminally-constrained control problems %J The Bulletin of Irkutsk State University. Series Mathematics %D 2017 %P 113-128 %V 19 %U http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a8/ %G ru %F IIGUM_2017_19_a8
V. A. Dykhta. Feedback minimum principle for quasi-optimal processes of terminally-constrained control problems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 19 (2017), pp. 113-128. http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a8/
[1] Arutyunov A. V., Optimality Conditions: Abnormal and Degenerate Problems, Mathematics and Its Applications, 526, Kluwer Academic Publishers, Dordrecht–Boston–London, 2000, 300 pp. | MR | MR | Zbl
[2] Bertsecas D. P., Constrained Optimization and Lagrange Multiplier Methods, Athena Scientific, 1996, 410 pp. | MR
[3] Gamkrelidze R. V., Principles of Optimal Control Theory, Mathematical Concepts and Methods in Science and Engineering, 7, New York Plenum Press, 1978, 175 pp. | MR | MR | Zbl
[4] Dmitruk A. V., Osmolovskii N. P., “On the Proof of Pontryagin's Maximum Principle by Means of Needle Variations”, Journal of Mathematical Sciences, 218:5 (2016), 581–598 | DOI | MR | Zbl
[5] Dykhta V. A., “Variational Optimality Conditions with Feedback Descent Controls that Strengthen the Maximum Principle”, The Bulletin of Irkutsk State University, 8 (2014), 86–103 | Zbl
[6] Dykhta V. A., “Variational Necessary Optimality Conditions with Feedback Descent Controls for Optimal Control Problems”, Doklady Mathematics, 91:3 (2015), 394–396 | DOI | DOI | MR | Zbl
[7] Dykhta V. A., “Positional Strengthenings of the Maximum Principle and Sufficient Optimality Conditions”, Proceedings of the Steklov Institute of Mathematics, 293, suppl. 1 (2016), S43–S57 | DOI | MR | Zbl | Zbl
[8] Dykhta V. A., Samsonyuk O. N., Hamilton–Jacobi inequalities and variational optimality conditions, ISU, Irkutsk, 2015, 150 pp.
[9] Clarke F., Optimization and nonsmooth analysis, Universite de Montreal, Montreal, 1989, 312 pp. | MR | MR | Zbl
[10] Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer Series in Soviet Mathematics, Springer-Verlag, New York, 1988, 517 pp. | DOI | MR | MR | Zbl
[11] Mordukhovich B. S., Approximation Methods in Problems of Optimization and Control, Nauka, M., 1988, 360 pp. | MR
[12] Plotnikov V. I., Sumin M. I., “Construction of minimizing sequences”, Differ. Uravn., 19:4 (1983), 581–588
[13] Polyak B. T., Introduction to Optimization, Optimization Software, New York, 1987, 464 pp. | MR | MR
[14] F. Clarke, Necessary condition in dynamic optimization, Memoirs of the Amer. Math. Soc., 13, no. 816, 2005, 113 pp. | MR
[15] F. H. Clarke, C. Nour, “Nonconvex duality in optimal control”, SIAM J. Control Optim., 43 (2005), 2036–2048 | DOI | MR | Zbl
[16] I. Ekeland, “Nonconvex minimization problems”, Bull. Amer. Math. Soc., 1:3 (1979), 443–474 | DOI | MR | Zbl