Mots-clés : Laplace transform, Volterra equation, identification of an external force.
@article{IIGUM_2017_19_a7,
author = {A. I. Dreglea and N. A. Sidorov},
title = {The identification of external force dynamics in the modeling of vibration},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {105--112},
year = {2017},
volume = {19},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a7/}
}
TY - JOUR AU - A. I. Dreglea AU - N. A. Sidorov TI - The identification of external force dynamics in the modeling of vibration JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2017 SP - 105 EP - 112 VL - 19 UR - http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a7/ LA - ru ID - IIGUM_2017_19_a7 ER -
A. I. Dreglea; N. A. Sidorov. The identification of external force dynamics in the modeling of vibration. The Bulletin of Irkutsk State University. Series Mathematics, Tome 19 (2017), pp. 105-112. http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a7/
[1] Verlan A. F., Sizikov V. S., Methods for the Solution of Integral Equations using Computer Programs, Nauk. Dumka, Kiev, 1978
[2] Doetsch G., Anleitung zum praktischen Gebrauch der Laplace-Transformation under der Z-Transformation, R. Oldenburg Verlag, Munchen, 1981 | MR
[3] Il'in V. A., Moiseev E. I., “Optimization of boundary controls of string vibrations”, Russian Mathematical Surveys, 60:6 (2005), 1093–1119 | DOI | DOI | MR | Zbl
[4] Kamynin V. L., “The inverse problem of determining the lower-order coefficient in parabolic equations with integral observation”, Math. Notes, 94:1 (2013), 205–213 | DOI | DOI | MR | Zbl
[5] Kamynin V. L., Kostin A. B., “Two inverse problems of finding a coefficient in a parabolic equation”, Differ. Eq., 46:3 (2010), 375–386 | DOI | MR | Zbl
[6] Kozhanov A. I., “A nonlinear loaded parabolic equation and a related inverse problem”, Math. Notes, 76:5–6 (2004), 784–795 | DOI | DOI | MR | Zbl
[7] Muftahov I. R., Sidorov D. N., Dreglea A. I., “On the role of Volterra equations in the inverse heat conduction problem with a nonlocal boundary condition”, Mathematical and computer modeling of natural-scientific and social issues, X Intern. scientific. conf. of young professionals and students (Russia, Penza, 23–27 May 2016), ed. I. V. Boikov, Publishing House of Penza State University, Penza, 2016, 15–19
[8] Muftahov I. R., Sidorov D. N., Sidorov N. A., “The Lavrentiev regularization of integral equations of the first kind in the space of continuous functions”, Izv. Irkutsk. Gos. Univ. Ser. Mat., 15 (2016), 62–77 (in Russian) | Zbl
[9] Prilepko A. I., Kostin A. B., “Inverse problems of the determination of the coefficient in parabolic equations. I”, Siberian Math. J., 33:3 (1992), 489–496 | DOI | MR | Zbl
[10] Prilepko A. I., Kostin A. B., “On inverse problems of determining a coefficient in a parabolic equation. II”, Siberian Math. J., 34:5 (1993), 923–937 | DOI | MR | Zbl
[11] Tikhonov A. N., Samarsky A. A., The equations of mathematical physics, Nauka Publ., M., 1977