@article{IIGUM_2017_19_a17,
author = {E. Finkelstein and A. Gornov},
title = {Algorithm of quasiuniform filling of reachable set for nonlinear control system},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {217--223},
year = {2017},
volume = {19},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a17/}
}
TY - JOUR AU - E. Finkelstein AU - A. Gornov TI - Algorithm of quasiuniform filling of reachable set for nonlinear control system JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2017 SP - 217 EP - 223 VL - 19 UR - http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a17/ LA - ru ID - IIGUM_2017_19_a17 ER -
%0 Journal Article %A E. Finkelstein %A A. Gornov %T Algorithm of quasiuniform filling of reachable set for nonlinear control system %J The Bulletin of Irkutsk State University. Series Mathematics %D 2017 %P 217-223 %V 19 %U http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a17/ %G ru %F IIGUM_2017_19_a17
E. Finkelstein; A. Gornov. Algorithm of quasiuniform filling of reachable set for nonlinear control system. The Bulletin of Irkutsk State University. Series Mathematics, Tome 19 (2017), pp. 217-223. http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a17/
[1] Kamenev G. K., “Approximation of completely bounded sets by the deep holes method”, Comput. Math. Math. Phys., 41:11 (2001), 1667–1675 | MR | Zbl
[2] Lotov A. V., “A numerical method for constructing sets of attainability for linear controlled systems with phase constraints”, USSR Comput. Math. Math. Phys., 15:1 (1975), 63–74 | DOI | MR | Zbl
[3] Panasyuk A. I., “Differential equation for nonconvex attainment sets”, Math. Notes Acad. Sci. USSR, 37:5 (1985), 395–400 | MR | Zbl | Zbl
[4] Tolstonogov A. A., Differential inclusions in a Banach space, Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 2000 | MR | Zbl
[5] Chernousko F. L., State estimation for dynamic systems, CRC Press, Boca Raton, 1994 | MR | MR
[6] R. Baier, M. Gerdts, I. Xausa, “Approximation of reachable sets using optimal control algorithms”, Numer. Algebra Control Optim., 3:3 (2013), 519–548 | DOI | MR | Zbl
[7] A. Yu. Gornov, T. S. Zarodnyuk, E. A. Finkelshtein, A. S. Anikin, “The Method of Uniform Monotonous Approximation of the Reachable Set Border for a Controllable System”, J. Glob. Optim., 66:1 (2016), 53–64 | DOI | MR | Zbl