Estimates of reachable sets for systems with impulsive control, uncertainty and nonlinearity
The Bulletin of Irkutsk State University. Series Mathematics, Tome 19 (2017), pp. 205-216 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of estimating trajectory tubes for nonlinear controlled dynamical systems with uncertainty in the initial data is studied. It is assumed that the dynamic system has a special structure in which the nonlinear terms are defined by quadratic forms on state coordinates and the values of uncertain initial states and admissible controls are constrained by ellipsoidal restrictions. Matrix of linear terms in the state system velocities is also not exactly known, but it belongs to the known compact in the corresponding space, i.e. the dynamics of the system is complicated by the presence of bilinear components in the right-hand sides of the system of differential equations. We solve the problem of estimating the reachable sets of nonlinear control system of this kind, the results make it possible to construction of the corresponding numerical algorithms. We solve here the problem of estimating the reachable sets of nonlinear controlled system of this kind, the results make it possible to construct the corresponding numerical algorithms.
Keywords: control system, reachable set, impulse control, state estimation, uncertainty.
@article{IIGUM_2017_19_a16,
     author = {T. F. Filippova},
     title = {Estimates of reachable sets for systems with impulsive control, uncertainty and nonlinearity},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {205--216},
     year = {2017},
     volume = {19},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a16/}
}
TY  - JOUR
AU  - T. F. Filippova
TI  - Estimates of reachable sets for systems with impulsive control, uncertainty and nonlinearity
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2017
SP  - 205
EP  - 216
VL  - 19
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a16/
LA  - ru
ID  - IIGUM_2017_19_a16
ER  - 
%0 Journal Article
%A T. F. Filippova
%T Estimates of reachable sets for systems with impulsive control, uncertainty and nonlinearity
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2017
%P 205-216
%V 19
%U http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a16/
%G ru
%F IIGUM_2017_19_a16
T. F. Filippova. Estimates of reachable sets for systems with impulsive control, uncertainty and nonlinearity. The Bulletin of Irkutsk State University. Series Mathematics, Tome 19 (2017), pp. 205-216. http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a16/

[1] Gurman V. I., The Extension Principle in Control Problems, Nauka, M., 1985

[2] Gurman V. I., Sachkov Yu. L., “Representation and Realization of the Generalized Solutions of the Unlimited-locus Controllable Systems”, Autom. Remote Control, 69:4 (2008), 609–617 | DOI | MR | Zbl

[3] Dykhta V. A., Samsonyuk O. N., Optimal Impulsive Control with Applications, Fizmatlit, M., 2000

[4] Zavalishchin S. T., Sesekin A. N., Impulse Processes: Models and Applications, Nauka, M., 1991

[5] Krasovskii N. N., Theory of motion control, Nauka, M., 1968

[6] Krotov V. F., Gurman V. I., Methods and Problems of Optimal Control, Nauka, M., 1973

[7] Kurzhanski A. B., Control and Observation under Uncertainty, Nauka, M., 1977

[8] Filippova T. F., “Construction of Set-valued Estimates of Reachable Sets for Some Nonlinear Dynamical Systems with Impulsive Control”, Proceedings of the Steklov Institute of Mathematics, 269, suppl. 1 (2010), 95–102 | DOI | MR | Zbl

[9] Filippova T. F., Matviichuk O. G., “Algorithms to Estimate the Reachability Sets of the Pulse Controlled Systems with Ellipsoidal Phase Constraints”, Autom. Remote Control, 72:9 (2011), 1911–1924 | DOI | MR | Zbl

[10] Filippova T. F., Matviichuk O. G., “Problems of Impulse Control under Uncertainty”, Proc. XII All-Russia conference on control problems, VSPU-2014 (IPU RAS, June 16–19 2014), M., 2014, 1024–1032

[11] Chernousko F. L., Estimation of the Pphase State of Dynamical Systems, Nauka, M., 1988

[12] Chernousko F. L., “Ellipsoidal Approximation of the Attainability Sets of a Linear System with an Uncertain Matrix”, Applied Mathematics and Mechanics, 60:6 (1996), 940–950 | Zbl

[13] T. F. Filippova, “Set-valued dynamics in problems of mathematical theory of control processes”, International Journal of Modern Physics B (IJMPB), 26:25 (2012), 1–8 | MR

[14] T. F. Filippova, “Asymptotic behavior of the ellipsoidal estimates of reachable sets of nonlinear control systems with uncertainty”, Proceedings of the 8th European Nonlinear Dynamics Conference, ENOC 2014 (Vienna, Austria, July 6–11, 2014), eds. H. Ecker, A. Steindl, S. Jakubek, Institute of Mechanics and Mechatronics, TU-Vienna, Austria, 2014, 149, 1–2, CD-ROM volume

[15] A. B. Kurzhanski, T. F. Filippova, “On the theory of trajectory tubes — a mathematical formalism for uncertain dynamics, viability and control”, Advances in nonlinear dynamics and control: a report from Russia, Progress in Systems and Control Theory, 17, ed. A. B. Kurzhanski, Birkhauser, Boston, 1993, 122–188 | MR

[16] A. B. Kurzhanski, I. Valyi, Ellipsoidal calculus for estimation and control, Birkhäuser, Boston, 1997 | MR | Zbl

[17] A. B. Kurzhanski, P. Varaiya, Dynamics and control of trajectory tubes, theory and computation, Systems control: foundations applications, 85, Birkhäuser, Basel, 2014 | DOI | MR

[18] O. G. Matviychuk, “Ellipsoidal estimates of reachable sets of impulsive control systems with bilinear uncertainty”, Cybernetics and Physics Journal, 5:3 (2016), 96–104

[19] R. Rishel, “An extended Pontryagin principle for control system whose control laws contain measures”, SIAM J. Control, 3 (1965), 191–205 | MR | Zbl

[20] R. B. Vinter, F. L. Pereira, “A maximum principle for optimal processes with discontinuous trajectories”, SIAM J. Contr. and Optimization, 26:1 (1988), 205–229 | DOI | MR | Zbl