@article{IIGUM_2017_19_a12,
author = {O. N. Samsonyuk and M. V. Staritsyn},
title = {Impulsive control systems with trajectories of bounded $p$-variation},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {164--177},
year = {2017},
volume = {19},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a12/}
}
TY - JOUR AU - O. N. Samsonyuk AU - M. V. Staritsyn TI - Impulsive control systems with trajectories of bounded $p$-variation JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2017 SP - 164 EP - 177 VL - 19 UR - http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a12/ LA - ru ID - IIGUM_2017_19_a12 ER -
O. N. Samsonyuk; M. V. Staritsyn. Impulsive control systems with trajectories of bounded $p$-variation. The Bulletin of Irkutsk State University. Series Mathematics, Tome 19 (2017), pp. 164-177. http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a12/
[1] Gurman V. I., “Optimal Processes of Singular Control”, Autom. Remote Control, 26 (1965), 783–792 | MR | Zbl
[2] Gurman V. I., Degenerate Problems of Optimal Control, Nauka, M., 1977, 304 pp.
[3] Gurman V. I., Dykhta V. A., “Singular Problems of Optimal Control and the Method of Multiple Maxima”, Autom. Remote Control, 38:3 (1977), 343–350 | MR | Zbl
[4] Gurman V. I., The Extension Principle in Optimal Control Problems, Fizmatlit, M., 1997, 288 pp.
[5] Gurman V. I., Sachkov Yu. L., “Representation and Realization of the Generalized Solutions of the Unlimited-locus Controllable Systems”, Autom. Remote Control, 69:4 (2008), 609–617 | DOI | MR | Zbl
[6] Gurman V. I., “Transformations of Control Systems for the Investigation of Pulse Modes”, Autom. Remote Control, 70:4 (2009), 644–651 | DOI | MR | Zbl
[7] Gurman V. I., “On Transformations of Degenerate Optimal Control Problems”, Autom. Remote Control, 74:11 (2013), 1878–1882 | DOI | MR | Zbl
[8] Dykhta V. A., Kolokolnikova G. A., “Minimum Conditions on the Set of Sequences in a Degenerate Variational Problem”, Mat. Zametki, 34:5 (1983), 735–744
[9] Dykhta V. A., Samsonyuk O. N., Optimal Impulsive Control with Applications, Fizmatlit, M., 2000, 256 pp.
[10] Zavalishchin S. T., Sesekin A. N., Impulse Processes: Models and Applications, Nauka, M., 1991, 256 pp.
[11] Kolokolnikova G. A., “Study of the Generalized Solutions of the Problem of Optimal Control with Unlimited Linear Controls on the Basis of Multiple Transformations”, Diff. Uravn., 28:11 (1992), 1919–1932 | Zbl
[12] Krotov V. F., “Discontinuous Solutions of the Variational Problems”, Izv. Vuzov, Mat., 1961, no. 1, 86–98
[13] Krotov V. F., Gurman V. I., Methods and Problems of Optimal Control, Nauka, M., 1973, 448 pp.
[14] Kurzhanski A. B., “Optimal Systems with Impulse Controls”, Differential Games and Control Problems, UNC AN SSSR, Sverdlovsk, 1975, 131–156
[15] Miller B. M., “Optimality Condition in the Control Problem for a System Described by a Measure Differential Equation”, Autom. Remote Control, 43:6-1 (1982), 752–761 ; 4, 505–513 | MR | Zbl
[16] Miller B. M., “Conditions for the Optimality in Problems of Generalized Control. I; II”, Autom. Remote Control, 53:3-1 (1992), 362–370 ; 4, 505–513 | MR | Zbl | Zbl
[17] Miller B. M., “Method of Discontinuous Time Change in Problems of Control of Impulse and Discrete-Continuous Systems”, Autom. Remote Control, 54:12-1 (1993), 1727–1750 | MR | Zbl
[18] Miller B. M., Rubinovich E. Ya., Optimization of Dynamic Systems with Impulsive Controls, Nauka, M., 2005, 430 pp.
[19] Miller B. M., Rubinovich E. Ya., “Discontinuous Solutions in the Optimal Control Problems and Their Representation by Singular Space-time Transformations”, Autom. Remote Control, 74:12 (2013), 1969–2006 | DOI | MR | Zbl
[20] Samsonyuk O. N., “Invariant Sets for the Nonlinear Impulsive Control Systems”, Autom. Remote Control, 76:3 (2015), 405–418 | DOI | MR | Zbl
[21] Sesekin A. N., “On the Set of Discontinuous Solutions of Nonlinear Differential Equations”, Izv. Vyssh. Uchebn. Zaved., Mat., 38:6 (1994), 83–89 | MR | Zbl
[22] Sesekin A. N., “Dynamical Systems with Nonlinear Impulsive Structure”, Trudy Inst. Mat. Mekh. UrO RAN, 6, 2000, 497–510
[23] Terehin A. P., “Integral Smoothness Properties of Periodic Functions of Bounded $p$-Variation”, Mathematical Notes, 2:3 (1967), 659–665 | DOI | MR | Zbl
[24] Filippova T. F., “Construction of Set-valued Estimates of Reachable Sets for Some Nonlinear Dynamical Systems with Impulsive Control”, Proceedings of the Steklov Institute of Mathematics, 269, suppl. 1 (2010), 95–102 | DOI | MR | Zbl
[25] Chistyakov V. V., “On the Theory of Set-valued Maps of Bounded Variation of one Real Variable”, Sbornik: Mathematics, 189:5 (1998), 797–819 | DOI | DOI | MR | Zbl
[26] J. Appell, J. Banas, N. Merentes, Bounded Variation and Around, De Gruyter, Boston, 2014, 476 pp. | MR | Zbl
[27] M. S. Aronna, F. Rampazzo, “On optimal control problems with impulsive commutative dynamics”, Proc. of the 52nd IEEE Conference on Decision and Control (2013), 1822–1827
[28] A. V. Arutyunov, D. Yu. Karamzin, F. L. Pereira, “On constrained impulsive control problems”, J. Math. Sci., 165, 654–688 | DOI | MR | Zbl
[29] A. Bressan, F. Rampazzo, “On differential systems with vector-valued impulsive controls”, Boll. Un. Mat. Ital. B(7), 2 (1988), 641–656 | MR | Zbl
[30] A. Bressan, F. Rampazzo, “Impulsive control systems without commutativity assumptions”, Optim. Theory Appl., 81:3 (1994), 435–457 | DOI | MR | Zbl
[31] V. V. Chistyakov, O. E. Galkin, “On maps of bounded $p$-variation with $p>1$”, Positivity, 2 (1998), 19–45 | DOI | MR | Zbl
[32] A. N. Daryin, A. B. Kurzhanski, “Dynamic programming for impulse control”, Ann. Reviews in Control, 32 (2008), 213–227 | DOI
[33] R. M. Dudley, R. Norvaisa, Product integrals, Young integral and $p$-variation, Springer, 1999 | MR
[34] R. M. Dudley, R. Norvaisa, Concrete functional calculus, Springer, 2011, 671 pp. | MR | Zbl
[35] M. A. Freedman, “Operators of $p$-variation and the evolution representation problem”, Trans. Amer. Math. Soc., 279 (1983), 95–112 | MR | Zbl
[36] E. Goncharova, M. Staritsyn, “Optimization of measure-driven hybrid systems”, J. Optim. Theory Appl., 153:1 (2012), 139–156 | DOI | MR | Zbl
[37] M. Guerra, A. Sarychev, “Frechet generalized trajectories and minimizers for variational problems of low coercivity”, Journal of Dynamical and Control Systems, 21:3 (2015), 351–377 | DOI | MR | Zbl
[38] D. Yu. Karamzin, “Necessary conditions of the minimum in impulsive control problems with vector measures”, J. of Math. Sci., 139 (2006), 7087–7150 | DOI | MR | Zbl
[39] A. Lejay, “An introduction to rough paths”, Lecture Notes in Mathematics, 1832, 2003, 1–59 | DOI | MR | Zbl
[40] T. Lyons, “Differential equations driven by rough signals”, Revista Matemática Iberoamericana, 1998, 215–310 | DOI | MR | Zbl
[41] T. Lyons, Z. Qian, System control and rough paths, Oxford Mathematical Monographs, Clarendon Press, Oxford, 2002, 216 pp. | MR | Zbl
[42] B. M. Miller, “The generalized solutions of nonlinear optimization problems with impulse control”, SIAM J. Control Optim., 34 (1996), 1420–1440 | DOI | MR | Zbl
[43] M. Motta, F. Rampazzo, “Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls”, Differential Integral Equations, 8 (1995), 269–288 | MR | Zbl
[44] M. Motta, F. Rampazzo, “Dynamic programming for nonlinear systems driven by ordinary and impulsive control”, SIAM J. Control Optim., 34 (1996), 199–225 | DOI | MR | Zbl
[45] F. L. Pereira, G. N. Silva, “Necessary conditions of optimality for vector-valued impulsive control problems”, Syst. Control Lett., 40 (2000), 205–215 | DOI | MR | Zbl
[46] J. E. Porter, “Helly's selection principle for function of bounded $p$-variation”, Rocky Mountain J. Math., 35:2 (2005), 675–679 | DOI | MR | Zbl
[47] G. N. Silva, R. B. Vinter, “Measure differential inclusions”, J. of Mathematical Analysis and Applications, 202 (1996), 727–746 | DOI | MR | Zbl
[48] N. Wiener, “The quadratic variation of a function and its Fourier coeficients”, J. Math. Phys., 3 (1924), 72–94 | DOI | Zbl
[49] L. C. Young, “An inequality of the Hólder type, connected with Stieltjes integration”, Acta Math., 67 (1936), 251–282 | DOI | MR