Mots-clés : singular spatio-temporal transformations
@article{IIGUM_2017_19_a10,
author = {B. M. Miller and E. Ya. Rubinovich},
title = {Dynamical systems with discontinuous solutions and problems with unbounded derivatives},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {136--149},
year = {2017},
volume = {19},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a10/}
}
TY - JOUR AU - B. M. Miller AU - E. Ya. Rubinovich TI - Dynamical systems with discontinuous solutions and problems with unbounded derivatives JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2017 SP - 136 EP - 149 VL - 19 UR - http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a10/ LA - ru ID - IIGUM_2017_19_a10 ER -
%0 Journal Article %A B. M. Miller %A E. Ya. Rubinovich %T Dynamical systems with discontinuous solutions and problems with unbounded derivatives %J The Bulletin of Irkutsk State University. Series Mathematics %D 2017 %P 136-149 %V 19 %U http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a10/ %G ru %F IIGUM_2017_19_a10
B. M. Miller; E. Ya. Rubinovich. Dynamical systems with discontinuous solutions and problems with unbounded derivatives. The Bulletin of Irkutsk State University. Series Mathematics, Tome 19 (2017), pp. 136-149. http://geodesic.mathdoc.fr/item/IIGUM_2017_19_a10/
[1] Warga J., Optimal Control of Differential and Functional Equations, Academic Press, N.Y.–London, 1972 | MR | Zbl
[2] Gurman V. I., “Optimal Processes with Unbounded Derivatives”, Autom. Remote Control, 33:12 (1972), 1924–1930 | MR | Zbl
[3] Dykhta V. A., Samsonyuk O. N., Optimal Impulsive Control with Applications, Fizmatlit, M., 2000, 256 pp. (in Russian)
[4] Zavalishchin S. T., Sesekin A. N., Impulse Processes: Models and Applications, Nauka, M., 1991 (in Russian)
[5] Miller B. M., “Method of Discontinuous Time Change in Problems of Control of Impulse and Discrete-Continuous Systems”, Autom. Remote Control, 54:12-1 (1993), 1727–1750 | MR | Zbl
[6] Miller B. M., “Controlled Systems with Impact Interactions”, J. Math. Sci. (N. Y.), 199:5 (2014), 571–582 | DOI | MR | Zbl
[7] Miller B. M., Rubinovich E. Ya., “Discontinuous Solutions in the Optimal Control Problems and Their Representation by Singular Space-time Transformations”, Autom. Remote Control, 74:12 (2013), 1969–2006 | DOI | MR | Zbl
[8] Miller B. M., Rubinovich E. Ya., Optimization of Dynamic Systems with Impulsive Controls, Nauka, M., 2005, 429 pp. (in Russian)
[9] Miller B. M., Rubinovich E. Ya., Bentsman J., “Singular Space-time Transformation. Toward One Method for Solving Painleve Problem”, Journal of Mathematical Sciences, 219:2 (2016), 208–219 | DOI | MR | Zbl
[10] Painlevé P., Leçons sur le Frottement, Hermann, Paris, 1895 | Zbl
[11] J. Bentsman, B. Miller, “Dynamical systems with active singularities of elastic type: A modeling and controller synthesis framework”, IEEE Trans. Autom. Control, 52:1 (2007), 39–55 | DOI | MR
[12] F. Génot, B. Brogliato, “New Results on Painlevé Paradoxes”, Eur. J. Mech. A/Solids, 18:18 (1999), 653–678 | MR
[13] L. Paoli, M. Schatzman, “Mouvement $\grave{a}$ un nombre fini de degr\a'{e}s de libert\a'{e} avec contraintes unilat\a'{e}rales: cas avec perte d'\a'{e}nergie”, Mathematical Modelling and Numerical Analysis, 27 (1993), 673–717 | DOI | MR | Zbl
[14] F. Pfeifer, C. Glocker, Multi-Body Dynamics with Unilateral Constraints, Wiley, New-York, 1996 | MR
[15] M. Schatzman, “Penalty approximation of Painlev\a{'}e problem”, Nonsmooth mechanics and analysis, Adv. Mech. Math., 12, 2006, 129–143 | DOI | MR
[16] D. E. Stewart, “Convergence of a Time-Stepping Scheme for Rigid-Body Dynamics and Resolution of Painleve's Problem”, Arch. Rational Mech. Anal., 145 (1998), 215–260 | DOI | MR | Zbl
[17] D. E. Stewart, “Rigid-Body Dynamics with Friction and Impact”, SIAM Review, 42:1 (2000), 3–39 | DOI | MR | Zbl
[18] W. J. Stronge, “Rigid body collisions with friction”, Proc. Roy. Soc. London. Ser. A, 431 (1990), 168–181 | DOI | MR
[19] J. Warga, “Variational problems with unbounded controls”, J. Soc. Indust. Appl. Math. Ser. A Control, 3 (1965), 424–438 | DOI | MR | Zbl
[20] S. T. Zavalishchin, A. N. Sesekin, Dynamic impulse systems. Theory and applications, Kluwer Academic Publishers Group, Dordrecht, 1997 | MR | Zbl
[21] Z. Zhao ea., “The Painlevé paradox studied at a 3D slender rod”, Multibody Syst. Dyn., 19 (2008), 323–343 | DOI | MR | Zbl