@article{IIGUM_2016_18_a7,
author = {R. Enkhbat and M. Bellalij and K. Jbilou and T. Bayartugs},
title = {A method for semidefinite quasiconvex maximization problem},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {110--121},
year = {2016},
volume = {18},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_18_a7/}
}
TY - JOUR AU - R. Enkhbat AU - M. Bellalij AU - K. Jbilou AU - T. Bayartugs TI - A method for semidefinite quasiconvex maximization problem JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2016 SP - 110 EP - 121 VL - 18 UR - http://geodesic.mathdoc.fr/item/IIGUM_2016_18_a7/ LA - en ID - IIGUM_2016_18_a7 ER -
%0 Journal Article %A R. Enkhbat %A M. Bellalij %A K. Jbilou %A T. Bayartugs %T A method for semidefinite quasiconvex maximization problem %J The Bulletin of Irkutsk State University. Series Mathematics %D 2016 %P 110-121 %V 18 %U http://geodesic.mathdoc.fr/item/IIGUM_2016_18_a7/ %G en %F IIGUM_2016_18_a7
R. Enkhbat; M. Bellalij; K. Jbilou; T. Bayartugs. A method for semidefinite quasiconvex maximization problem. The Bulletin of Irkutsk State University. Series Mathematics, Tome 18 (2016), pp. 110-121. http://geodesic.mathdoc.fr/item/IIGUM_2016_18_a7/
[1] Arslan G., Demirkol M. F., Song Y., “Equilibrium efficiency improvement in MIMO interference systems: a desentralized stream control apprioch”, IEEE Transaction on Wireless Communications, 6:8, August (2007), 2984–2993 | DOI
[2] Bouhamidi A., Enkhbat R., Jbilou K., “Semidefinite Concave Programming”, Journal of Mongolian Mathematical Society, 16 (2012), 37–46 | MR | Zbl
[3] Balakrishnan A. V., Introduction to Optimization Theory in a Hilbert Space, Springer-Verlag, 1970 | MR
[4] Enkhbat R., Quasiconvex Programming and its Applications, Lambert Publisher, Germany, 2009
[5] Enkhbat R., Bayartugs T., “Quasiconvex Semidefinite Minimization Problem”, Journal of Optimization: Hindawi Publishing Corporation, 201 (2013), 346131, 6 pp.
[6] Enkhbat R., Bayartugs T., “Semidefinite Quasiconcave programming”, International Journal of Pure and Applied Mathematics, 87:4 (2013), 547–557 | DOI | MR
[7] Pardalos P. M., Wolkowicz H. (eds.), Topics in Semidefinite and Interior Point Methods, Fields Institute Communications 18, AMS, Providence, Rhode Island, 1998 | MR
[8] Rockafellar R. T., Convex Analysis, Princeton University Press, 1970 | MR | Zbl
[9] Strekalovsky A. S., “Global Optimality Conditions for Nonconvex Optimization”, Journal of Global Optimization, 12 (1998), 415–434 | DOI | MR | Zbl
[10] Strekalovsky A. S., Enkhbat R., Global Maximum of Convex Functions on an Arbitrary Set, Dep. in VINITI No 1063, Irkutsk, 1990, 27 pp.
[11] Malick J., Povh J., Rendl F., Wiegele A., Regularization methods for semidefinite programming, September 1, 2008 | MR
[12] Sigen Ye, Blum R. S., “Optimized signaling for MIMO interference systems with feedback”, IEEE Transactions on Signal Processing, 51:11 (2003), 2839–2848 | DOI
[13] Vandenberghe L., Boyd S., “Semidefinite programming”, SIAM Rev., 38 (1996), 49–95 | DOI | MR | Zbl
[14] Zhang Y., “On extending some primal-dual interior point algorithms from linear programming to semidefinite programming”, SIAM Journal on Optimization, 8:2 (1998), 365–386 | DOI | MR | Zbl
[15] Zhang L., Zhang Y., Liang Y. C., Xin Y., Poor H. V., “On the Gaussian MIMO BC-MAC duality with multiple transmit covarianca constraints”, IEEE Transactions on Information Theory, 58:4, april (2012) | MR
[16] Tzu-Chen Liang, Ta-Chung Wang, Yinyu Ye, A Gradient Search Method to Round the Semidefinite Programming Relaxation Solution for Ad Hoc Wireless Sensor Network Localization, TECHNICAL REPORT SOL 2004-2, December, 2004
[17] Wolkowicz H., Saigal R., Vandenberghe L., Handbook of Semidefinite Programming, Kluwer, 2000 | MR
[18] Jansen K., Rolim J., Sudan M., Linear Semidefinite Programming and Randomization Methods for Combinatorial Optimization Problems, Dagstuhl Seminar No 00041, Report No 263, 2012