Keywords: linear real congruent transformation, bundle of quadratic forms, signdefiniteness, sign-variability, sign-constancy.
@article{IIGUM_2016_18_a5,
author = {M. A. Novikov},
title = {Signdefiniteness and reduction to full squares for the bundle of tree quadratic forms},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {74--92},
year = {2016},
volume = {18},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_18_a5/}
}
TY - JOUR AU - M. A. Novikov TI - Signdefiniteness and reduction to full squares for the bundle of tree quadratic forms JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2016 SP - 74 EP - 92 VL - 18 UR - http://geodesic.mathdoc.fr/item/IIGUM_2016_18_a5/ LA - ru ID - IIGUM_2016_18_a5 ER -
M. A. Novikov. Signdefiniteness and reduction to full squares for the bundle of tree quadratic forms. The Bulletin of Irkutsk State University. Series Mathematics, Tome 18 (2016), pp. 74-92. http://geodesic.mathdoc.fr/item/IIGUM_2016_18_a5/
[1] Gantmacher F. R., The Theory of Matrices, Nauka Publ., M., 1967, 576 pp.
[2] Kuzmin P. A., Small Oscillation and Stability of Motion, Nauka Publ., M., 1973, 206 pp.
[3] Lyapunov A. M., General Problem of Stability of Motion, v. 2, Gostekhizdat, M.–L., 1956, 7–263
[4] Novickov M. A., “Correlation of sign definiteness with reduction to perfect square of two-quadratic forms bundle”, Bulletin of Burjat State University. Mathematics and Computer Science, 2015, no. 9, 7–15
[5] Novickov M. A., “Simultaneous diagonilization of three real symmetric matrices”, Investiya Vuzov. Mathematics, 12 (2014), 70–82 | Zbl
[6] Novickov M. A., “Reduction of matrices of quadratic forms to reciprocally simplifed ones”, Contemporary Technologies. Systems Analysis. Modelling, 2010, no. 2(26), 181–187
[7] Chetayev N. G., Stabiity of Motion. Works in Analytical Mechanics, USSR Acad. Sci. Publ., M., 1962, 535 pp.