Mots-clés : Pascal's triangle, fractal matrix.
@article{IIGUM_2016_18_a2,
author = {O. V. Kuzmin and B. A. Starkov},
title = {Binary matrixes based on {Pascal's} triangle's arithmetics and char sequences},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {38--47},
year = {2016},
volume = {18},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_18_a2/}
}
TY - JOUR AU - O. V. Kuzmin AU - B. A. Starkov TI - Binary matrixes based on Pascal's triangle's arithmetics and char sequences JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2016 SP - 38 EP - 47 VL - 18 UR - http://geodesic.mathdoc.fr/item/IIGUM_2016_18_a2/ LA - ru ID - IIGUM_2016_18_a2 ER -
O. V. Kuzmin; B. A. Starkov. Binary matrixes based on Pascal's triangle's arithmetics and char sequences. The Bulletin of Irkutsk State University. Series Mathematics, Tome 18 (2016), pp. 38-47. http://geodesic.mathdoc.fr/item/IIGUM_2016_18_a2/
[1] Bondarenko B. A., Generalized Pascal triangles and pyramids: their fractals, graphs and applications, The Fibonacci Association, Santa Clara, 1993, 253 pp.
[2] Kuzmin O. V., Orkina K. P., “Creation of the codes correcting errors by means of the Pascal type triangle”, Bulletin of Buryat State University, 2006, no. 13, 32–39 (in Russian)
[3] Kuzmin O. V., Generalized Pascal pyramids and their applications, Nauka, Siberian Publishing firm RAS, Novosibirsk, 2000, 294 pp. (in Russian)
[4] Novikov F. A., Discrete mathematics for Programmers, Textbook for Higher Schools, 2nd ed., SPB, Piter, 2004, 364 pp. (in Russian)
[5] Shur A. M., Combinatorics on words, Textbook, Publ. House of the Ural University, Ekaterinburg, 2003, 96 pp. (in Russian)
[6] S. Wolfram, “Geometry of binomial coefficients”, American Mathematical Monthly, 91:9 (1984), 566–571 | DOI | MR | Zbl