Mots-clés : convolution, distribution.
@article{IIGUM_2016_17_a5,
author = {M. V. Falaleev},
title = {Degenerate integro-differential equations of convolution type in {Banach} spaces},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {77--85},
year = {2016},
volume = {17},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_17_a5/}
}
TY - JOUR AU - M. V. Falaleev TI - Degenerate integro-differential equations of convolution type in Banach spaces JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2016 SP - 77 EP - 85 VL - 17 UR - http://geodesic.mathdoc.fr/item/IIGUM_2016_17_a5/ LA - ru ID - IIGUM_2016_17_a5 ER -
M. V. Falaleev. Degenerate integro-differential equations of convolution type in Banach spaces. The Bulletin of Irkutsk State University. Series Mathematics, Tome 17 (2016), pp. 77-85. http://geodesic.mathdoc.fr/item/IIGUM_2016_17_a5/
[1] Vainberg M. M., Trenogin V. A., Theory of Branching of Solutions of Nonlinear Equations, Nauka, M., 1969, 528 pp. (in Russian)
[2] Vladimirov V. S., Generalized Functions in Mathematical Physics, Nauka, M., 1979, 320 pp. (in Russian)
[3] Sidorov N. A., Romanova O. A., “About Application some Results of Theory of Branching by Solving of Differential Equations with Degenerating”, Different. Equations, 19:9 (1983), 1516–1526 | MR | Zbl
[4] Falaleev M. V., “Fundamental Operator-function of Singular Differential Operators in Banach Spaces”, Sib. Math. Journal, 41:5 (2000), 1167–1182 | MR | Zbl
[5] Falaleev M. V., “Singular integro-differential equations of the special type in Banach spaces and it's application”, Izv. Irkut. gos. un-ta. Ser. Mathematics, 6:4 (2013), 128–137 | Zbl
[6] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publ., Dordrecht, 2002, 548 pp. | MR | Zbl