@article{IIGUM_2016_17_a0,
author = {E. N. Galushina},
title = {On a double series representation of $\pi$},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--11},
year = {2016},
volume = {17},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_17_a0/}
}
E. N. Galushina. On a double series representation of $\pi$. The Bulletin of Irkutsk State University. Series Mathematics, Tome 17 (2016), pp. 3-11. http://geodesic.mathdoc.fr/item/IIGUM_2016_17_a0/
[1] Hurwitz A., Courant R., Theory of functions, Nauka, M., 1968, 648 pp. (in Russian)
[2] Griffiths Ph., Harris J., Principles of Algebraic Geometry, v. 1, Mir, M., 1982, 496 pp.
[3] Mumford D., Lectures on theta-functions, Mir, M., 1988, 448 pp. (in Russian)
[4] Prudnikov A. P., Brychkov Y. A., Marychev O. I., Integrals and series, Nauka, M., 1981, 800 pp. (in Russian)
[5] Whittaker E. T., Watson G. N., A Course of Modern Analysis, in 2 parts, v. 2, Transcendental functions, Gos. izd-vo fiz.-mat. lit., M., 1963, 516 pp. (in Russian)
[6] Fichtenholz G. M., A course of differential and integral calculus, v. 2, Lan', Sankt-Peterburg, 2009, 800 pp. (in Russian)
[7] R. Diaz, S. Robins, “Pick's Formula via the Weierstrass $\wp$-function”, The American Mathematical Monthly, 102:5 (1995), 432–437 | DOI | MR
[8] E. N. Tereshonok, “McMullen's formula and a multidimensional analog of the Weierstrass $\zeta$-function”, Complex variables and elliptic equations: an international journal, 60:11 (2015), 1594–1601 | DOI | MR | Zbl
[9] P. Zappa, “Su una generalizzazione della $\wp$ di Weierstrass”, Bollettino U. M. I., 6:2-A (1983), 245–252 | MR
[10] P. Zappa, “Osservazioni sui nuclei di Bochner–Martinelli”, Acc. Naz. Lincei, VIII:LXVII (1979), 21–26 | MR