@article{IIGUM_2016_16_a8,
author = {A. A. Shcheglova and A. D. Kononov},
title = {On robust stability of systems of differential-algebraic equations},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {117--130},
year = {2016},
volume = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a8/}
}
TY - JOUR AU - A. A. Shcheglova AU - A. D. Kononov TI - On robust stability of systems of differential-algebraic equations JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2016 SP - 117 EP - 130 VL - 16 UR - http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a8/ LA - ru ID - IIGUM_2016_16_a8 ER -
A. A. Shcheglova; A. D. Kononov. On robust stability of systems of differential-algebraic equations. The Bulletin of Irkutsk State University. Series Mathematics, Tome 16 (2016), pp. 117-130. http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a8/
[1] Gantmakher F. R., The theory of matrices, Nauka, M., 1988 (in Russian) | MR
[2] Polyak B. T., Robust stability and control, Nauka, M., 2002 (in Russian)
[3] Trenogin V. A., Functional analysis, Nauka, M., 1980 (in Russian) | MR
[4] Shcheglova A. A., “The transformation of a linear algebraic-differential system to an equivalent form”, Analytical Mechanics, Stability and Motion Control, Proceeding of the IX International Chetaev Conference (Irkutsk, June 2007), v. 5, 298–307 (in Russian)
[5] Shcheglova A. A., “Existence of solution to initial problem for a degenerat time-varying linear hybrid system”, Russian Mathematics, 2010, no. 9, 49–62 | DOI | MR
[6] R. Byers, N. K. Nichols, “On the stability radius oa a generalized state-space system”, Linear Algebra Appl., 188–189 (1993), 113–134 | DOI | MR | Zbl
[7] C. J. Chyan, N. Y. Du, V. H. Linh, “On data-dependence of exponential stability and the stability radii for linear time-varying differential-algebraic systems”, J. Differ. Equ., 245 (2008), 2078–2102 | DOI | MR | Zbl
[8] N. Y. Du, V. H. Linh, “Stability radii for linear time-varying differential-algebraic equations with respect to dynamics perturbations”, J. Differ. Equ., 230 (2006), 579–599 | DOI | MR | Zbl
[9] N. Y. Du, “Stability radii of differential-algebraic equations with structured perturbations”, Syst. Control Lett., 57 (2008), 546–553 | DOI | MR | Zbl
[10] N. Y. Du, D. D. Thuan, N. C. Liem, “Stability radius of implicit dynamic equations with constant coefficients on time scales”, Syst. Control Lett., 60 (2011), 596–603 | DOI | MR | Zbl