Mots-clés : rational parallelotope.
@article{IIGUM_2016_16_a6,
author = {O. A. Shishkina},
title = {Bernoulli polynomials in several variables and summation of monomials over lattice points of a rational parallelotope},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {89--101},
year = {2016},
volume = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a6/}
}
TY - JOUR AU - O. A. Shishkina TI - Bernoulli polynomials in several variables and summation of monomials over lattice points of a rational parallelotope JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2016 SP - 89 EP - 101 VL - 16 UR - http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a6/ LA - ru ID - IIGUM_2016_16_a6 ER -
%0 Journal Article %A O. A. Shishkina %T Bernoulli polynomials in several variables and summation of monomials over lattice points of a rational parallelotope %J The Bulletin of Irkutsk State University. Series Mathematics %D 2016 %P 89-101 %V 16 %U http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a6/ %G ru %F IIGUM_2016_16_a6
O. A. Shishkina. Bernoulli polynomials in several variables and summation of monomials over lattice points of a rational parallelotope. The Bulletin of Irkutsk State University. Series Mathematics, Tome 16 (2016), pp. 89-101. http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a6/
[1] Gelfond A. O., Calculus of finite differences, Nauka, M., 1977 (in Russian) | MR
[2] Cassels J. W. S., An introduction to the geometry of numbers, Mir, M., 1965 (in Russian) | MR
[3] Lando S. K., Lectures on generating functions, MZNMO, M., 2007 (in Russian)
[4] Leinartas E. K., Rogozina M. S., “Solvability of the Cauchy problem for a polynomial difference operator and monomial bases for the quotients of a polynomial ring”, Siberian Mathematical Journal, 56:1 (2015), 111–121 (in Russian) | MR | Zbl
[5] Nekrasova T. I., “Sufficient conditions of algebraicity of generating functions of the solutions of multidimensional difference equations”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya “Matematika”, 6:3 (2013), 88–96 (in Russian) | Zbl
[6] Stanley R., Enumerative combinatorics, Mir, M., 1990 (in Russian) | MR
[7] Ustinov A. V., “A discrete analoge of Euler's summation formula”, Mat. Zametki, 71:6 (2002), 931–936 (in Russian) | DOI | MR | Zbl
[8] Shishkina O. A., “The Euler–Maclaurin formula for rational parallelotope”, Izvestiya Irkutskogo Gosudarstvennogo Universiteta. Seriya “Matematika”, 13 (2015), 56–71 (in Russian)
[9] Euler L., Differential calculus, translation from lat., M.–L., 1949 (in Russian)
[10] M. Brion, N. Berline, “Local Euler–Maclaurin formula for polytopes”, Moscow Mathematical Society Journal, 7 (2007), 355–383 | MR
[11] M. Brion, M. Vergne, “Lattice points in simple polytopes”, Journal of the American Mathematical Society, 10:2 (1997), 371–392 | DOI | MR | Zbl
[12] M. Brion, M. Vergne, “Residue formulae, vector partition functions and lattice points in rational polytopes”, Journal of the American Mathematical Society, 10:4 (1997), 797–833 | DOI | MR | Zbl
[13] E. K. Leinartas, T. I. Nekrasova, “Constant coefficient linear difference equations on the rational cones of the integer lattice”, Siberian Mathematical Journal, 57:1 (2016), 74–85 | DOI | MR | Zbl
[14] O. A. Shishkina, “The Euler–Maclaurin Formula and Differential Operators of Infinite Order”, Journal of Siberian Federal University, Mathematics Physics, 8:1 (2015), 86–93 | DOI