An approximate solution of distributed and boundary control problem for the thermal process
The Bulletin of Irkutsk State University. Series Mathematics, Tome 16 (2016), pp. 71-88

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of nonlinear optimal distribution and boundary control of a thermal process, described by a Fredholm integral-differential equations, is considered. The unique solvability of a system of nonlinear integral equations of optimal controls is investigated. It was found the sufficient conditions for the existence of a unique solution of the problem of nonlinear optimization. The algorithm for constructing approximate solutions was developed and their convergence on optimal control, optimal processes and functionality, were proved, that it is necessary to distinguish between three types of approximations of the optimal process.
Keywords: functional, the maximum principle, the optimal control, system of nonlinear integral equations, approximate solution
Mots-clés : convergence.
@article{IIGUM_2016_16_a5,
     author = {A. Kerimbekov and R. J. Nametkulova and A. K. Kadirimbetova},
     title = {An approximate solution of  distributed and boundary control problem for  the thermal  process},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {71--88},
     publisher = {mathdoc},
     volume = {16},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a5/}
}
TY  - JOUR
AU  - A. Kerimbekov
AU  - R. J. Nametkulova
AU  - A. K. Kadirimbetova
TI  - An approximate solution of  distributed and boundary control problem for  the thermal  process
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2016
SP  - 71
EP  - 88
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a5/
LA  - ru
ID  - IIGUM_2016_16_a5
ER  - 
%0 Journal Article
%A A. Kerimbekov
%A R. J. Nametkulova
%A A. K. Kadirimbetova
%T An approximate solution of  distributed and boundary control problem for  the thermal  process
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2016
%P 71-88
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a5/
%G ru
%F IIGUM_2016_16_a5
A. Kerimbekov; R. J. Nametkulova; A. K. Kadirimbetova. An approximate solution of  distributed and boundary control problem for  the thermal  process. The Bulletin of Irkutsk State University. Series Mathematics, Tome 16 (2016), pp. 71-88. http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a5/