Mots-clés : reversible circuits
@article{IIGUM_2016_16_a2,
author = {S. F. Vinokurov and A. S. Frantseva},
title = {The complexity of the representation of multiple-output {Boolean} functions},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {30--42},
year = {2016},
volume = {16},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a2/}
}
TY - JOUR AU - S. F. Vinokurov AU - A. S. Frantseva TI - The complexity of the representation of multiple-output Boolean functions JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2016 SP - 30 EP - 42 VL - 16 UR - http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a2/ LA - ru ID - IIGUM_2016_16_a2 ER -
S. F. Vinokurov; A. S. Frantseva. The complexity of the representation of multiple-output Boolean functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 16 (2016), pp. 30-42. http://geodesic.mathdoc.fr/item/IIGUM_2016_16_a2/
[1] Vinokurov S. F., Frantseva A. S., “An approximate algorithm for computing the complexity of reversible functions in the basis of Toffoli”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Series “Mathematics”, 4:4 (2011), 12–26 (in Russian)
[2] Vinokurov S. F., Frantseva A. S., “Complexity of Boolean functions in some classes of reversible circuits”, Synthesis and complexity of control systems, Articles XVIII International school-seminar (Penza, 28 Sept.–Oct. 2009), ed. O. M. Kasim-Zade, Publishing House of the Mechanics and Mathematics Faculty of Moscow State University, M., 2009, 20–22
[3] Vinokurov S. F., Peryazev N. A. (eds.), Selected problems of the theory of Boolean functions, Fizmalit, M., 2001, 192 pp. (in Russian)
[4] T. Toffoli, “Bicontinuous Extensions of Invetible Combinatorial Functions”, Mathematical Systems Theory, 14 (1981), 13–23 | DOI | MR | Zbl
[5] T. Toffoli, “Reversible Computing”, Automata, Languages and Programming, Lecture Notes in Computer Science, 85, Springer, Berlin–Heidelberg, 1980, 632–644 | DOI | MR