Mots-clés : Perturbation Method, Quadrature
@article{IIGUM_2016_15_a5,
author = {I. R. Muftahov and D. N. Sidorov and N. A. Sidorov},
title = {Lavrentiev regularization of integral equations of the first kind in the space of continuous functions},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {62--77},
year = {2016},
volume = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a5/}
}
TY - JOUR AU - I. R. Muftahov AU - D. N. Sidorov AU - N. A. Sidorov TI - Lavrentiev regularization of integral equations of the first kind in the space of continuous functions JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2016 SP - 62 EP - 77 VL - 15 UR - http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a5/ LA - ru ID - IIGUM_2016_15_a5 ER -
%0 Journal Article %A I. R. Muftahov %A D. N. Sidorov %A N. A. Sidorov %T Lavrentiev regularization of integral equations of the first kind in the space of continuous functions %J The Bulletin of Irkutsk State University. Series Mathematics %D 2016 %P 62-77 %V 15 %U http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a5/ %G ru %F IIGUM_2016_15_a5
I. R. Muftahov; D. N. Sidorov; N. A. Sidorov. Lavrentiev regularization of integral equations of the first kind in the space of continuous functions. The Bulletin of Irkutsk State University. Series Mathematics, Tome 15 (2016), pp. 62-77. http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a5/
[1] Denisov A. M., “The approximate solution of a Volterra equation of the first kind”, USSR Computational Mathematics and Mathematical Physics, 15:4 (1975), 237–239 | DOI | MR | Zbl
[2] Lavrentiev M. M., Some Improperly Posed Problems in Mathematical Physics, Springer, Berlin, 1967
[3] Lusternik L. A., Sobolev V. J., Elements of Functional Analysis, Frederick Ungar Publishing Co., 1961 | MR
[4] Sidorov D. N., Methods of Analysis of Integral Dynamical Models: Theory and Applications, Irkutsk State Univ. Publ., 2013 (in Russian)
[5] Sidorov D. N., “Solvability of systems of integral Volterra equations of the first kind with piecewise continuous kernels”, Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 1, 62–72 (in Russian) | MR
[6] Sidorov D. N., Tynda A. N., Muftahov I. R., “Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel”, Bul. of the South Ural State University. Ser. “Math. Model., Programming and Comp. Software”, 7:3 (2014), 107–115
[7] Sidorov N. A., Trenogin V. A., “Linear Equations Regularization using the Perturbation Theory”, Diff. Eqs., 16:11 (1980), 2038–2049
[8] Sidorov N. A., Trenogin V. A., “A Certain Approach the Problem of Regularization of the Basis of the Perturbation of Linear Operators”, Mathematical notes of the Academy of Sciences of the USSR, 20:5 (1976), 976–979 | DOI | MR | Zbl
[9] Sidorov N. A., Sidorov D. N., Muftahov I. R., “Perturbation Theory and the Banach-Steinhaus Theorem for Regularization of the Linear Equations of the First Kind”, IIGU Ser. Matematika, 14 (2015), 82–99
[10] Tikhonov A. N., Solution of Ill-Posed Problems, Winston, New York, 1977 | MR
[11] Tikhonov A. N., Ivanov V. K., Lavrent'ev M. M., “Ill-posed Problems”, Partial Differential Eqs, Nauka, M., 1970, 224–239
[12] Trenogin V. A., Functional analysis, Nauka, M., 1980, 496 pp. | MR
[13] Tynda A. N., Malyakina E. N., “Direct Numerical Methods for Solving Volterra Integral Equations of the I Kind with Discontinuous Kernels”, Proc. 8th Int. Sci. Tech. Conf. Young Specialists, Post-graduate students, PGU, Penza, 2014, 84–89 (in Russian)
[14] Tynda A. N., Boginskaya P. A., “Numerical Analysis of Volterra Integral Equations of the I Kind with Discontinuous Kernels”, Proc. 8th Int. Sci. Tech. Conf. Young Specialists, Post-graduate students, PGU, Penza, 2014, 76–81 (in Russian)
[15] H. Brunner, P. J. van der Houwen, The Numerical Solution of Volterra Equations, North-Holland, Amsterdam, 1986 | MR | Zbl
[16] P. K. Kythe, P. Puri, Computational Methods for Linear Integral Equations, Birkhäuser, Boston, 2002 | MR | Zbl
[17] D. Sidorov, Integral Dynamical Models: Singularities, Signals and Control, World Scientific Series on Nonlinear Science, Series A, 87, ed. L. O. Chua, World Scientific Publ., Singapore–London, 2015, 258 pp. | MR | Zbl
[18] V. S. Sizikov, “Further Development of the New Version of a Posteriori Choosing Regularization Parameter in Ill-Posed Problems”, Intl. J. of Artificial Intelligence, 13:1 (2015), 184–199