@article{IIGUM_2016_15_a4,
author = {A. Kerimbekov and R. J. Nametkulova and A. K. Kadirimbetova},
title = {Optimality conditions in the problem of thermal control with integral-differential equation},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {50--61},
year = {2016},
volume = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a4/}
}
TY - JOUR AU - A. Kerimbekov AU - R. J. Nametkulova AU - A. K. Kadirimbetova TI - Optimality conditions in the problem of thermal control with integral-differential equation JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2016 SP - 50 EP - 61 VL - 15 UR - http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a4/ LA - ru ID - IIGUM_2016_15_a4 ER -
%0 Journal Article %A A. Kerimbekov %A R. J. Nametkulova %A A. K. Kadirimbetova %T Optimality conditions in the problem of thermal control with integral-differential equation %J The Bulletin of Irkutsk State University. Series Mathematics %D 2016 %P 50-61 %V 15 %U http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a4/ %G ru %F IIGUM_2016_15_a4
A. Kerimbekov; R. J. Nametkulova; A. K. Kadirimbetova. Optimality conditions in the problem of thermal control with integral-differential equation. The Bulletin of Irkutsk State University. Series Mathematics, Tome 15 (2016), pp. 50-61. http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a4/
[1] Vladimirov V. S., “Mathematical problems of one-speed particle transport theory”, Works MIAN, 61, 1961, 3–158 (in Russian)
[2] Volterra V., Theory of functionals, integral and integro-differential equations, Nauka, M., 1982, 304 pp. (in Russian) | MR
[3] Egorov A. I., Optimal control of thermal and diffusion processes, Nauka, M., 1978, 500 pp. (in Russian) | MR
[4] Krasnov M. V., Integral equations, Nauka, M., 1975, 303 pp. (in Russian) | MR
[5] A. Kowalewski, “Optimal Control of an Infinite Order Hyperbolic System with Multiple Time-Varying Lags”, Automatyka, 15 (2011), 53–65
[6] Asatur zh. Khurshudyan, “On optimal boundary and distributed control of partial integro-differential equations”, Archives of Control Sciences, 24 (LX):1 (2014), 5–25 | MR | Zbl
[7] E. W. Sachs, A. K. Strauss, “Efficient solution of partial integro-differential equations in finance”, Applied Numerical Math., 58:11 (2008), 1687–1703 | DOI | MR | Zbl
[8] J. Thorwe, S. Bhalekar, “Solving partial integro-differential equations using Laplace transform method”, American J. of Computational and Applied Math., 2:3 (2012), 101–104 | DOI
[9] A. K. Kerimbekov, “On solvability of the nonlinear optimal control problem for processes described by the semi-linear parabolic equations”, Proceedings World Congress on Engineering, v. 1, London, UK, 2011, 270–275
[10] A. Kerimbekov, “On the Solvability of a Nonlinear Optimal Control Problem for the Thermal Processes Described by Fredholm Integro-Differential Equations”, Current Trends in Analysis and Its Applications, Proceedings of the 9th ISAAC Congress, Krakuw 2013, Trends in mathematics, XVI, Springer International Publishing, Switzerland, 2015, 803–811 | DOI