Optimality conditions in the problem of thermal control with integral-differential equation
The Bulletin of Irkutsk State University. Series Mathematics, Tome 15 (2016), pp. 50-61 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The optimal control problem for thermal process described by Fredholm integral-differential equation is considered. The definition of the weak generalized solution of the boundary problem is given. The algorithm of its construction is presented. It was found that the optimal control should be found as the solution of nonlinear integral equations with additional conditions in the form of differential inequalities with respect to the source functions.
Keywords: a boundary value problem, weak generalized solution, functional, the maximum principle, the optimal control.
@article{IIGUM_2016_15_a4,
     author = {A. Kerimbekov and R. J. Nametkulova and A. K. Kadirimbetova},
     title = {Optimality conditions in the problem of thermal control with integral-differential equation},
     journal = {The Bulletin of Irkutsk State University. Series Mathematics},
     pages = {50--61},
     year = {2016},
     volume = {15},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a4/}
}
TY  - JOUR
AU  - A. Kerimbekov
AU  - R. J. Nametkulova
AU  - A. K. Kadirimbetova
TI  - Optimality conditions in the problem of thermal control with integral-differential equation
JO  - The Bulletin of Irkutsk State University. Series Mathematics
PY  - 2016
SP  - 50
EP  - 61
VL  - 15
UR  - http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a4/
LA  - ru
ID  - IIGUM_2016_15_a4
ER  - 
%0 Journal Article
%A A. Kerimbekov
%A R. J. Nametkulova
%A A. K. Kadirimbetova
%T Optimality conditions in the problem of thermal control with integral-differential equation
%J The Bulletin of Irkutsk State University. Series Mathematics
%D 2016
%P 50-61
%V 15
%U http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a4/
%G ru
%F IIGUM_2016_15_a4
A. Kerimbekov; R. J. Nametkulova; A. K. Kadirimbetova. Optimality conditions in the problem of thermal control with integral-differential equation. The Bulletin of Irkutsk State University. Series Mathematics, Tome 15 (2016), pp. 50-61. http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a4/

[1] Vladimirov V. S., “Mathematical problems of one-speed particle transport theory”, Works MIAN, 61, 1961, 3–158 (in Russian)

[2] Volterra V., Theory of functionals, integral and integro-differential equations, Nauka, M., 1982, 304 pp. (in Russian) | MR

[3] Egorov A. I., Optimal control of thermal and diffusion processes, Nauka, M., 1978, 500 pp. (in Russian) | MR

[4] Krasnov M. V., Integral equations, Nauka, M., 1975, 303 pp. (in Russian) | MR

[5] A. Kowalewski, “Optimal Control of an Infinite Order Hyperbolic System with Multiple Time-Varying Lags”, Automatyka, 15 (2011), 53–65

[6] Asatur zh. Khurshudyan, “On optimal boundary and distributed control of partial integro-differential equations”, Archives of Control Sciences, 24 (LX):1 (2014), 5–25 | MR | Zbl

[7] E. W. Sachs, A. K. Strauss, “Efficient solution of partial integro-differential equations in finance”, Applied Numerical Math., 58:11 (2008), 1687–1703 | DOI | MR | Zbl

[8] J. Thorwe, S. Bhalekar, “Solving partial integro-differential equations using Laplace transform method”, American J. of Computational and Applied Math., 2:3 (2012), 101–104 | DOI

[9] A. K. Kerimbekov, “On solvability of the nonlinear optimal control problem for processes described by the semi-linear parabolic equations”, Proceedings World Congress on Engineering, v. 1, London, UK, 2011, 270–275

[10] A. Kerimbekov, “On the Solvability of a Nonlinear Optimal Control Problem for the Thermal Processes Described by Fredholm Integro-Differential Equations”, Current Trends in Analysis and Its Applications, Proceedings of the 9th ISAAC Congress, Krakuw 2013, Trends in mathematics, XVI, Springer International Publishing, Switzerland, 2015, 803–811 | DOI