@article{IIGUM_2016_15_a0,
author = {D. V. Apanovich and V. A. Voronov and O. N. Samsonyuk},
title = {Construction of the reachable set for a two-dimensional bilinear impulsive control system},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {3--16},
year = {2016},
volume = {15},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a0/}
}
TY - JOUR AU - D. V. Apanovich AU - V. A. Voronov AU - O. N. Samsonyuk TI - Construction of the reachable set for a two-dimensional bilinear impulsive control system JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2016 SP - 3 EP - 16 VL - 15 UR - http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a0/ LA - ru ID - IIGUM_2016_15_a0 ER -
%0 Journal Article %A D. V. Apanovich %A V. A. Voronov %A O. N. Samsonyuk %T Construction of the reachable set for a two-dimensional bilinear impulsive control system %J The Bulletin of Irkutsk State University. Series Mathematics %D 2016 %P 3-16 %V 15 %U http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a0/ %G ru %F IIGUM_2016_15_a0
D. V. Apanovich; V. A. Voronov; O. N. Samsonyuk. Construction of the reachable set for a two-dimensional bilinear impulsive control system. The Bulletin of Irkutsk State University. Series Mathematics, Tome 15 (2016), pp. 3-16. http://geodesic.mathdoc.fr/item/IIGUM_2016_15_a0/
[1] Apanovich D. V., Voronov V. A., “Numerical approximation of reachable sets for nonlinear impulsive control systems”, Abstracts of Russian Conference with International Participation dedicated to the memory of prof. N. V. Azbelev and prof. E. L. Tonkov (Izhevsk, Russia, June 9–11, 2015), 24–25
[2] Apanovich D. V., Voronov V. A., “Numerical approximation of the non-simply connected reachable set for a nonlinear impulsive control system”, Abstract of 3rd Russian–Mongolian Conference of Young Scientist on Math Modelling and Information Technology (Irkutsk, Russia–Hanh, Mongolia, June 23–30, 2015), 17
[3] Dykhta V. A., Samsonyuk O. N., Optimal Impulsive Control with Applications, Fizmatlit, M., 2000
[4] Zavalishchin S. T., Sesekin A. N., Impulse Processes: Models and Applications, Nauka, M., 1991 | MR
[5] Miller B. M., Rubinovich E. Ya., Optimization of Dynamic Systems with Impulsive Controls, Nauka, M., 2005
[6] Samsonyuk O. N., “Monotonicity of Lyapunov Type Functions for Impulsive Control Systems”, The bulletin of Irkutsk state university. Mathematics, 7 (2014), 104–123 | Zbl
[7] Samsonyuk O. N., “Invariant Sets for the Nonlinear Impulsive Control Systems”, Autom. Remote Control, 76:3 (2015), 405–418 | DOI | MR | Zbl
[8] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, N.Y., 1998 | MR | Zbl
[9] V. Dykhta, O. Samsonyuk, “Some applications of Hamilton–Jacobi inequalities for classical and impulsive optimal control problems”, European Journal of Control, 17 (2011), 55–69 | DOI | MR | Zbl
[10] R. B. Vinter, Optimal Control, Birkhauser, Boston, 2000 | MR | Zbl