@article{IIGUM_2015_14_a6,
author = {N. A. Sidorov and D. N. Sidorov and I. R. Muftahov},
title = {Perturbation theory and the {Banach{\textendash}Steinhaus} theorem for regularization of the linear equations of the first kind},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {82--99},
year = {2015},
volume = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a6/}
}
TY - JOUR AU - N. A. Sidorov AU - D. N. Sidorov AU - I. R. Muftahov TI - Perturbation theory and the Banach–Steinhaus theorem for regularization of the linear equations of the first kind JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2015 SP - 82 EP - 99 VL - 14 UR - http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a6/ LA - ru ID - IIGUM_2015_14_a6 ER -
%0 Journal Article %A N. A. Sidorov %A D. N. Sidorov %A I. R. Muftahov %T Perturbation theory and the Banach–Steinhaus theorem for regularization of the linear equations of the first kind %J The Bulletin of Irkutsk State University. Series Mathematics %D 2015 %P 82-99 %V 14 %U http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a6/ %G ru %F IIGUM_2015_14_a6
N. A. Sidorov; D. N. Sidorov; I. R. Muftahov. Perturbation theory and the Banach–Steinhaus theorem for regularization of the linear equations of the first kind. The Bulletin of Irkutsk State University. Series Mathematics, Tome 14 (2015), pp. 82-99. http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a6/
[1] Govurin M. K., Lectures on Computational Methods, Nauka Publ., M., 1971
[2] Gukovskii S. A., “Regularization of the Construction of a Nonsingular Solution of a Linear Equations of the First Kind with Degeneracy”, Izv. Vyssh. Uchebn. Zaved. Mat., 1980, no. 1, 71–74 (in Russian) | MR
[3] Ivanov V. K., Vasin V. V., Tanana V. P., The Theory of Linear Ill-posed Problems and their Applications, Nauka, M., 1978 (in Russian)
[4] Lavrentiev M. M., Some Improperly Posed Problems in Mathematical Physics, Springer, Berlin, 1967
[5] Lattès R., Lions J.-L., The method of quasi-inversibility: application to partial differential equations, American Elsevier, NY, 1969 | MR
[6] Loginov B. V., Sidorov N. A., “Calculation of Eigenvalues and Eigenvectors of Bounded Operators by the False-Perturbation Method”, Mathematical notes of the Academy of Sciences of the USSR, 19:1 (1976), 62–64 | DOI | MR | Zbl
[7] Maslov V. P., “The Existence of a Solution of an Ill-Posed Problem is Equivalent to the Convergence of a Regularization Process”, Uspekhi Mat. Nauk, 141:23(3) (1968), 183–184 (in Russian) | MR | Zbl
[8] Samarskii A. A., Introduction to Finite Difference Schemes, Nauka Publ., M., 1971
[9] Sidorov N. A., Trenogin V. A., “Linear Equations Regularization using the Perturbation Theory”, Diff. Eqs., 16:11 (1980), 2038–2049
[10] Sidorov N. A., Trenogin V. A., “A Certain Approach the Problem of Regularization of the Basis of the Perturbation of Linear Operators”, Mathematical notes of the Academy of Sciences of the USSR, 20:5 (1976), 976–979 | DOI | MR | Zbl
[11] Sidorov N. A., “Calculation of Eigenvalues and Eigenvectors of Linear Operators by the Theory of Perturbations”, Differential Equations, 14:8 (1978), 1522–1525 (in Russian) | MR | Zbl
[12] Sidorov N. A., General Issues of Regularisation in the Problems of the Theory of Branching, Irkutsk State University Publ., Irkutsk, 1982, 312 pp.
[13] Sidorov N. A., Leont'ev R. Yu., Dreglya A. I., “On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhood”, Mathematical Notes, 91:1–2 (2012), 90–104 | DOI | DOI | MR | Zbl
[14] Sidorov N. A., “Explicit and Implicit Parametrisation of the Construction of Branching Solutions by Iterative Methods”, Sbornik: Mathematics, 186:2 (1995), 297–310 | DOI | MR | Zbl
[15] Sidorov N. A., Sidorov D. N., “Solving the Hammerstein Integral Equation in Irregular Case by Successive Approximations”, Siberian Mathematical Journal, 51:2 (2010), 325–329 | DOI | MR | Zbl
[16] Sidorov N. A., Sidorov D. N., Krasnik A. V., “On Solution of the Volterra Operator-Integral Equations in Irregular Case using Successive Approximations”, Differential Equations, 46:6 (2010), 874–882 | MR | Zbl
[17] Sidorov D. N., Tynda A. N., Muftahov I. R., “Numerical Solution of Volterra Integral Equations of the First Kind with Piecewise Continuous Kernel”, Bul. of the South Ural State University. Ser. “Math. Model., Programming and Comp. Software”, 7:3 (2014), 107–115
[18] Stechkin S. B., “The Best Approximation of Linear Operators”, Mat. Notes, 1:2 (1967), 91–99 | DOI | MR | MR | Zbl
[19] Tikhonov A. N., Solution of Ill-Posed Problems, Winston, New York, 1977
[20] Tikhonov A. N., Ivanov V. K., Lavrent'ev M. M., “Ill-posed Problems”, Partial Differential Eqs., Nauka, M., 1970, 224–239
[21] Trenogin V. A., Functional analysis, Nauka, M., 1980
[22] Yagola A. G., Inverse Problems and Methods of Their Solution. Applications to Geophysics, Binom Publ. Ser. Mathematical Modelling, 2014, 216 pp. (in Russian)
[23] U. Hämarik, B. Kaltenbacher, U. Kangro, E. Resmerita, Regularization by Discretization in Banach Spaces, 2015, 36 pp., arXiv: 1506.05425v1 [math.NA]
[24] N. D. Hào, L. H. Chuonga, D. Lesnic, “Heuristic regularization methods for numerical differentiation”, Computers and Mathematics with Applications, 63 (2012), 816–826 | DOI | MR | Zbl
[25] G. I. Marchuk, “Perturbation theory and the statement of inverse problems”, 5th Conf. on Optimization Tech., Lecture Notes in Computer Science, 4, 1973, 159–166 | DOI | MR | Zbl
[26] I. R. Muftahov, D. N. Sidorov, N. A. Sidorov, “On perturbation method for the first kind equations: regularization and applications”, Bul. of the South Ural State University. Ser. “Math. Model., Programming and Comp. Software”, 8:2 (2015), 69–80
[27] A. G. Ramm, A. B. Smirnova, “On Stable Numerical Differentiation”, Mathematics of Computation, 70:235 (2001), 1131–1153 | DOI | MR | Zbl
[28] D. Sidorov, Integral Dynamical Models: Singularities, Signals and Control, World Scientific Series on Nonlinear Science, Series A, 87, ed. L. O. Chua, World Scientific Publ., Singapore–London, 2014, 243 pp. | DOI | MR
[29] N. Sidorov, B. Loginov, A. Sinitsyn, M. Falaleev, Lyapunov–Schmidt Methods in Nonlinear Analysis and Applications, Kluwer Academic Publ., Dordrecht, 2002, 548 pp. | MR | Zbl
[30] V. S. Sizikov, “Further Development of the New Version of a Posteriori Choosing Regularization Parameter in Ill-Posed Problems”, Intl. J. of Artificial Intelligence, 13:1 (2015), 184–199
[31] V. A. Trenogin, N. A. Sidorov, “Regularization of computation of branching solution of nonlinear equations”, Lecture Notes in Mathematics, 594, 1977, 491–506 | DOI | MR
[32] J. K. Wu, J. Long, F. He, Q. L. He, “Numerical differentiation based algorithm for power measurement”, 5th Intl IEEE Conf. in Power Electronics and Drive Systems, v. 1, 2003, 302–307