@article{IIGUM_2015_14_a5,
author = {O. N. Samsonyuk},
title = {Applications of {Lyapunov} type functions for optimization problems in impulsive control systems},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {64--81},
year = {2015},
volume = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a5/}
}
TY - JOUR AU - O. N. Samsonyuk TI - Applications of Lyapunov type functions for optimization problems in impulsive control systems JO - The Bulletin of Irkutsk State University. Series Mathematics PY - 2015 SP - 64 EP - 81 VL - 14 UR - http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a5/ LA - ru ID - IIGUM_2015_14_a5 ER -
%0 Journal Article %A O. N. Samsonyuk %T Applications of Lyapunov type functions for optimization problems in impulsive control systems %J The Bulletin of Irkutsk State University. Series Mathematics %D 2015 %P 64-81 %V 14 %U http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a5/ %G ru %F IIGUM_2015_14_a5
O. N. Samsonyuk. Applications of Lyapunov type functions for optimization problems in impulsive control systems. The Bulletin of Irkutsk State University. Series Mathematics, Tome 14 (2015), pp. 64-81. http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a5/
[1] Gurman V. I., The Extension Principle in Optimal Control Problems, Nauka, M., 1997 | MR
[2] Dykhta V. A., Samsonyuk O. N., Optimal Impulsive Control with Applications, Fizmatlit, M., 2000
[3] Dykhta V. A., Samsonyuk O. N., “A Maximum Principle for Smooth Optimal Impulsive Control Problems with Multipoint State Constraints”, Comput. Math. Math. Phys., 49 (2009), 942–957 | DOI | MR | Zbl
[4] Dykhta V. A., Samsonyuk O. N., “Hamilton–Jacobi Inequalities in Control Problems for Impulsive Dynamical Systems”, Proc. of the Steklov Institute of Mathematics, 271, 2010, 86–102 | DOI | MR | Zbl
[5] Dykhta V. A., Samsonyuk O. N., “Canonical Theory of Optimality for Impulsive Processes”, Sovrem. Mat. Fundament. Napravl., 42, 2011, 118–124
[6] Zavalishchin S. T., Sesekin A. N., Impulse Processes: Models and Applications, Nauka, M., 1991 | MR
[7] Miller B. M., “Optimality Condition in the Control Problem for a System Described by a Measure Differential Equation”, Autom. Remote Control, 43:6/1 (1982), 752–761 ; 4, 39–48 | MR | Zbl
[8] Miller B. M., “Conditions for the Optimality in Problems of Generalized Control. I; II”, Autom. Remote Control, 53:3 (1992), 362–370 ; 4, 505–513 | MR | Zbl | Zbl
[9] Miller B. M., “Method of Discontinuous Time Change in Problems of Control of Impulse and Discrete-Continuous Systems”, Autom. Remote Control, 54:12/1 (1993), 1727–1750
[10] Miller B. M., Rubinovich E. Ya., Optimization of Dynamic Systems with Impulsive Controls, Nauka, M., 2005
[11] Samsonyuk O. N., “Compound Lyapunov Type Functions in Control Problems of Impulsive Dynamical Systems”, Trudy Inst. Mat. Mekh. UrO RAN, 16, Ekaterinburg, 170–178
[12] Samsonyuk O. N., “Monotonicity of Lyapunov Type Functions for Impulsive Control Systems”, The bulletin of Irkutsk state university. Mathematics, 7 (2014), 104–123 | MR
[13] Samsonyuk O. N., “Invariant Sets for the Nonlinear Impulsive Control Systems”, Autom. Remote Control, 76:3 (2015), 405–418 | DOI | MR | Zbl
[14] Sesekin A. N., “On the Set of Discontinuous Solutions of Nonlinear Differential Equations”, Izv. Vyssh. Uchebn. Zaved., Mat., 38:6 (1994), 81–87 | MR | MR | Zbl
[15] Sesekin A. N., “Dynamical Systems with Nonlinear Impulsive structure”, Trudy Inst. Mat. Mekh. UrO RAN, 6, Ekaterinburg, 2000, 497–510
[16] Stephanova A. V., “The Hamilton–Jacobi–Bellman Equation in a Nonlinear Impulse Control Problem”, Trudy Inst. Mat. Mekh. UrO RAN, 5, Ekaterinburg, 1998, 301–318 | Zbl
[17] F. H. Clarke, Yu. S. Ledyaev, R. J. Stern, P. R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, N.Y., 1998 | MR | Zbl
[18] W. J. Code, G. N. Silva, “Closed loop stability of measure-driven impulsive control systems”, J. Dyn. Cont. Syst., 16 (2010), 1–21 | DOI | MR | Zbl
[19] A. N. Daryin, A. B. Kurzhanski, “Dynamic programming for impulse control”, Ann. Reviews in Control, 32 (2008), 213–227 | DOI
[20] V. Dykhta, O. Samsonyuk, “Some applications of Hamilton–Jacobi inequalities for classical and impulsive optimal control problems”, European Journal of Control, 17 (2011), 55–69 | DOI | MR | Zbl
[21] S. L. Fraga, F. L. Pereira, “On the feedback control of impulsive dynamic systems”, Proc. of 47th IEEE Conference on Decision and Control (2008), 2135–2140
[22] A. C. Matos, F. L. Pereira, “Hamilton–Jacobi conditions for a measure differential control problem”, Proc. of XII Baikal International conference on Methods of optimization and its applications (Irkutsk, Russia, 2001), 237–245
[23] B. M. Miller, “The generalized solutions of nonlinear optimization problems with impulse control”, SIAM J. Control Optim., 34 (1996), 1420–1440 | DOI | MR | Zbl
[24] M. Motta, F. Rampazzo, “Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls”, Differential Integral Equations, 8 (1995), 269–288 | MR | Zbl
[25] M. Motta, F. Rampazzo, “Dynamic programming for nonlinear systems driven by ordinary and impulsive control”, SIAM J. Control Optim., 34 (1996), 199–225 | DOI | MR | Zbl
[26] F. L. Pereira, G. N. Silva, “Stability for impulsive control systems”, Dynamical Systems, 17 (2002), 421–434 | DOI | MR | Zbl
[27] R. B. Vinter, Optimal Control, Birkhauser, Boston, 2000 | MR | Zbl