Problems and methods of the fixed points of the maximum principle
The Bulletin of Irkutsk State University. Series Mathematics, Tome 14 (2015), pp. 31-41
Cet article a éte moissonné depuis la source Math-Net.Ru
Necessary optimality conditions for optimal control problems in the form of the maximum principle are represented as a special problem of the fixed points of the constructed control operators. On the basis of the proposed approach are considered methods of searching controls, satisfying the maximum principle.
Keywords:
maximum principle, fixed point problem, method of successive approximations.
@article{IIGUM_2015_14_a2,
author = {A. S. Buldaev},
title = {Problems and methods of the fixed points of the maximum principle},
journal = {The Bulletin of Irkutsk State University. Series Mathematics},
pages = {31--41},
year = {2015},
volume = {14},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a2/}
}
A. S. Buldaev. Problems and methods of the fixed points of the maximum principle. The Bulletin of Irkutsk State University. Series Mathematics, Tome 14 (2015), pp. 31-41. http://geodesic.mathdoc.fr/item/IIGUM_2015_14_a2/
[1] Pontrjagin L. S., Boltjanskij V. G., Gamkrelidze R. V., Mishhenko E. F., Matematicheskaja teorija optimal'nyh processov, Nauka, M., 1976, 392 pp. | MR
[2] Vasil'ev O. V., Lekcii po metodam optimizacii, Izd-vo Irkut. un-ta, Irkutsk, 1994, 344 pp.
[3] Metody reshenija zadach matematicheskogo programmirovanija i optimal'nogo upravlenija, Nauka, Novosibirsk, 1984, 232 pp.
[4] Samarskij A. A., Gulin A. V., Chislennye metody, Nauka, M., 1989, 432 pp. | MR
[5] Buldaev A. S., Metody vozmushhenij v zadachah uluchshenija i optimizacii upravljaemyh sistem, Izd-vo Burjatsk. gos. un-ta, Ulan-Ude, 2008, 260 pp.
[6] Chernousko F. L., Ocenivanie fazovogo sostoyanija dinamicheskih sistem, Nauka, M., 1988, 319 pp. | MR